Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (2): 398-411.doi: 10.13278/j.cnki.jjuese.201602109

Previous Articles     Next Articles

Properties and Evolution of Ore-Forming Fluid in Liuju Sandstone Type Copper Deposit, Chuxiong Basin in Yunnan Province

Wu Haizhi, Han Runsheng, Wu Peng   

  1. Faculty of Land Resources Engineering, Kunming University of Science and Technology/Southwest Institute of Geological Survey, Geological Survey Centre for Nonferrous Metals Resource, Kunming, Yunnan 650093, China
  • Received:2015-08-13 Published:2016-03-26
  • Supported by:

    Supported by Specialized Research Fund for the Doctoral Program of Higher Education (20115314110010), Special Exploration Program for National Crisis Mines (20089943), Programs of the NNSF (U1133602, 41102049), Yunnan Province Innovation Team Project (2014) and The State Key Laboratory Open Research Program of Ore Deposit Geochemistry (201109)

Abstract:

Liuju copper deposit is one of the typical terrestrial sandstone-type deposits, and which is located in the Meso-Cenozoic red-bed basin of South China. The mineralization occurred in the interface between the purple and grey beds of medium-fine grained sandstone strata. Besides, Hematite, chalcocite, bornite, chalcopyrite, and pyrite coexist in this transitional zone from the purple bed to grey bed, a horizontal metallic mineral zone. Aiming at the ore-forming fluid evolution and mineralization mechanism, this paper focuses on the characteristics of fluid inclusions on the basis of mineralization types and mineralizing periods. The fluid mineralization of Liuju deposit can be divided into diagenesis period and tectonic-reworked period; the latter can be further divided into early and late stages. In the two stages, fluid inclusions are predominated by pure-liquid type aqueous inclusions and gas-liquid aqueous inclusions with rich liquid. The homogenization temperatures of the three stages experienced an evolution trend as follows:increased from 96-164℃ to 108-227℃, then decreased to 94-159℃; while the salinities(w(NaCl)) were slightly decreased from 2.7%-16.7% to 2.1%-13.8%, then 1.2%-13.5%, showing little difference. Generally, all the three stages of the ore-forming fluid were medium-low temperature and medium-low salinity basin brine. By the petrographic feature observation and the laser raman spectroscopy test of the gas component in fluid inclusions, it was confirmed that small amounts of hydrocarbon fluid inclusions were contained in the diagenesis period; while small amounts of three-phase CO2 inclusions were found in the tectonic-reworked period. Besides, their grouped fluid compositions are different. The ore-forming fluid experienced a trend as follows:the gas component changed from the reducing organic-rich end (CH4) to the relatively oxidizing end (CO2) in the N2-CH4-CO2 triangular diagram; meanwhile, the ionic component changed from the rich SO42-(-Cl-)-Ca2+-K+ type to the rich Cl--Na+ type. Different properties of ore-forming fluids played different roles in the mineralization of bedded orebodies and veined orebodies. During the ore-forming fluid evolution, the disseminated or laminated ores in sandstone-type copper deposits were formed in the diagenesis period; while, the high-grade banded, veined ores on the base of bedded orebody controlled by the fracture are formed during the further evolution in tectonic-reworked period.

Key words: sandstone-type copper deposit, fluid inclusions, ore-forming fluid evolution, metallogenetic process, Liuju, Chuxiong basin

CLC Number: 

  • P618.41

[1] 张志斌, 曹德斌. 滇中楚雄中生代盆地的形成、演化及其与哀牢山造山带的关系:以楚雄西舍路至禄丰碧城镇区域地质综合剖面为例[J]. 地球学报, 2002, 23(2):129-134. Zhang Zhibin, Cao Debin. The Relationship of the Formation and Evolution of Mesozoic Chuxiong Basin to Ailaoshan Orogenic Belt in Central Yunnan:Examplified by Regional Geological Integrated Section from Xishelu of Chuxiong to Bichengzhen of Lufeng[J]. Acta Geoscientia Sinica, 2002, 23(2):129-134.

[2] 刘昌辉, 刘存林, 蒋淑芳. 砂岩铜矿地质:滇中砂岩铜矿床的实践与认识[M]. 北京:冶金工业出版社, 1977:227-244. Liu Changhui, Liu Cunlin, Jiang Shufang. Geology of Sandstone-Type Copper Deposit:Practice and Understanding of Sandstone-Type Copper Deposit in Central Yunnan Province[M]. Beijing:Metallurgical Industry Press, 1977:227-244.

[3] 何毅特. 滇中楚雄盆地砂岩铜矿床成因研究[J]. 西南矿产地质, 1990, 4(2):1-9. He Yite. Research on the Origin of Sandstone-Type Copper Deposit in Chuxiong Baisin, Yunnan Province[J]. Geology and Mineral Resources of Southwest China, 1990, 4(2):1-9.

[4] 方向池, 卢今才, 王维贤. 云南六苴矿区构造动力成矿探讨[J]. 西南矿产地质, 1990, 4(4):49-56. Fang Xiangchi, Lu Jincai, Wang Weixian. Discussion on Tectonic Dynamic Metallogeny of Liuju Deposit in Yunnan Province[J]. Geology and Mineral Resources of Southwest China, 1990, 4(4):49-56.

[5] 涂光炽, 王秀璋, 陈先沛. 中国层控矿床地球化学:第三卷[M]. 北京:科学出版社, 1988:1-9, 15-19, 229-254. Tu Guangchi, Wang Xiuzhang, Chen Xianpei. Geochemistry of Stratabound Deposits in China:Volume 3rd[M]. Beijing:Science Press, 1988:1-9, 15-19, 229-254.

[6] 冉崇英, 庄汉平. 楚雄盆地铜、盐、有机矿床组合地球化学[M]. 北京:科学出版社, 1998:73-76. Ran Chongying, Zhuang Hanping. Geochemistry of the Associated Copper, Saline and Organic Deposits in the Chuxiong Basin, Yunnan, China[M]. Beijing:Science Press, 1998:73-76.

[7] 秦德先, 孟清, 杨明初. 牟定郝家河铜矿床的沉积-改造成因[J]. 矿床地质, 1993, 12(2):97-107. Qin Dexian, Meng Qing, Yang Mingchu. The Sedimentary-Reformation Origin of the Haojiahe Copper Deposit, Mouding County, Yunnan Province[J]. Mineral Deposits, 1993, 12(2):97-107.

[8] 张可清, 熊鹏飞. 滇中砂岩铜矿成矿作用和成矿模式[J]. 地球科学:中国地质大学学报, 1995, 20(2):199-202. Zhang Keqing, Xiong Pengfei. Minerogenesis and Minerogenic Model of Sandstone-Type Copper Deposit in Central Yunnan Province[J]. Earth Science:Journal of China University of Geoscience, 1995, 20(2):199-202.

[9] 谭凯旋. 砂岩铜矿地球化学和成矿动力学[M]. 北京:地震出版社, 1998:137-143. Tan Kaixuan. Geochemistry and Dynamic Metallogeny of Sandstone-Type Copper Deposit[M]. Beijing:Seismological Press, 1998:137-143.

[10] 韩润生, 邹海俊, 吴鹏, 等. 楚雄盆地砂岩型铜矿床构造-流体耦合成矿模型[J]. 地质学报, 2010, 84(10):1438-1447. Han Runsheng, Zou Haijun, Wu Peng, et al. Coupling Tectonic-Fluid Metallogenic Model of the Sandstone-Type Copper Deposit in the Chuxiong Basin, China[J]. Acta Geologica Sinica, 2010, 84(10):1438-1447.

[11] 胡煜昭, 韩润生, 闵朝龙, 等. 楚雄盆地六苴铜矿含矿岩系沉积演化、成矿时代及成矿深度分析[J]. 世界地质, 2010, 29(2):218-225. Hu Yuzhao, Han Runsheng, Min Chaolong, et al. Analysis on Sedimentary Evolution, Mineralization Epoch and Depth of Ore-Bearing Rocks in Liuju Copper Deposit, Chuxiong Basin[J]. Global Geology, 2010, 29(2):218-225.

[12] 吴鹏, 韩润生, 胡煜昭, 等. 云南楚雄红层盆地六苴砂岩铜矿区断裂的地质特征及其与成矿的关系[J]. 地质通报, 2010, 27(5):618-625. Wu Peng, Han Runsheng, Hu Yuzhao, et al. Geological Characteristics of Faults in the Liuju Sanstone Copper District in the Chuxiong Red-Bed Basin, Yunnan, China, and Their Relations to Mineralization[J]. Geological Bulletin of China, 2010, 27(5):618-625.

[13] 朱和平, 王莉娟, 刘建明. 不同成矿阶段流体包裹体气相成分的四极质谱测定[J]. 岩石学报, 2003, 32(7):314-318. Zhu Heping, Wang Lijuan, Liu Jianming. Determination of Quadrupole Mass Spectrometer for Gaseous Composition of Fluid Inclusions from Different Mineralization Stages[J]. Acta Petrologica Sinica, 2003, 32(7):314-318.

[14] 陶士振, 郭宏莉, 张宝民, 等. 沉积岩包裹体的岩相学、分类、术语及常被忽略的问题[J]. 地质科学, 2003, 38(2):275-280. Tao Shizhen, Guo Hongli, Zhang Baomin, et al. Petrography, Classification, Terminology and Fundamental Questions Ignored Usually of Inclusion in Sedment Rocks[J]. Chinese Journal of Geology, 2003, 38(2):275-280.

[15] 欧光习, 李林强, 孙玉梅. 沉积盆地流体包裹体研究的理论与实践[J]. 矿物岩石地球化学通报, 2006, 25(1):1-11. Ou Guangxi, Li Linqiang, Sun Yumei. Theory and Application of the Fluid Inclusion Research on the Sedimentary Basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(1):1-11.

[16] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京:科学出版社, 2004:156-159, 201-213. Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fluid Inclusion[M]. Beijing:Science Press, 2004:156-159, 201-213.

[17] Bodnar R J. Reviced Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions[J]. Geochimistry Cosmochimistry Acta, 1993,57:683-684.

[18] 张艳, 韩润生, 吴鹏, 等. 陆相砂岩型铜矿床矿物分带模式的pH-Eh相图:以楚雄盆地大姚六苴铜矿床为例[J]. 矿物学报, 2013, 33(3):363-368. Zhang Yan, Han Runsheng, Wu Peng, et al. Application of Thermodynamics pH-Eh to Mineral Zonation Model of Sandstone-Hosted Type Copper Depo-sits in the Chuxiong Basin, Central Yunnan Province, China[J]. Acta Mineralogica Sinica, 2013, 33(3):363-368.

[19] 於崇文. 热液成矿作用动力学[M]. 北京:中国地质大学出版社, 1993:124-129. Yu Chongwen. Dynamics of Hydrothermal Mineralization[M]. Beijing:China University of Geoscience Press, 1993:124-129.

[20] 付晓飞, 肖建华, 孟令东. 断裂在纯净砂岩中的变形机制及断裂带内部结构[J]. 吉林大学学报(地球科学版), 2014, 44(1):25-37. Fu Xiaofei, Xiao Jianhua, Meng Lingdong. Fault Deformation Mechanisms and Internal Structure Characteristics of Fault Zone in Pure Sandstone[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1):25-37.

[21] 庄汉平, 冉崇英, 何明琴, 等. 楚雄盆地铜、盐、有机质相互作用与砂岩铜矿生成[J]. 地质学报, 1996, 70(2):162-172. Zhuang Hanping, Ran Chongying, He Mingqin, et al. Interactions of Copper, Evaporite and Organic Matter and Genesis of Sandstone-Hosted Copper Deposits in Chuxiong Basin, Yunnan Province[J]. Acta Geologica Sinica, 1996, 70(2):162-172.

[22] 李秉伦, 王英兰, 谢奕汉. 气液包裹体气相色谱分析及其地质意义[J]. 地质科学, 1982(2):220-225. Li Binglun, Wang Yinglan, Xie Yihan. Gas Chromatographic Analysis of Fluid Inclusions and Their Geological Significance[J]. Scientia Geologica Sinica, 1982(2):220-225.

[23] 徐永昌, 沈平, 孙明良, 等. 非烃及稀有气体的地球化学[C]//中国科学院兰州地质研究所. 生物、气体地球化学开放研究实验室研究年报(19881989). 北京:科学出版社, 1991:1-9. Xu Yongchang, Shen Ping, Sun Mingliang, et al. Nonhydrocarben and Noble Gas Geochemistry[C]//Lanzhou Institute of Geology, Chinese Academy of Sciences. Annual Review of Biological, Gas Geochemistry Open Laboratory(1988-1989). Beijing:Science Press, 1991:1-9.

[24] 刘家军, 柳振江, 杨艳, 等. 盐类在金属、非金属成矿过程中的作用[J]. 地质找矿论丛, 2007, 22(3):161-171. Liu Jiajun, Liu Zhenjiang, Yang Yan, et al. The Salt Roles in the Mineralizing Processes of Metal and Non-metal Deposits[J]. Contributions to Geology and Mineral Resources Research, 2007, 22(3):161-171.

[25] Hitzman W M, Selley D,Bull S. Formation of Sedimentary Rock-Hosted Stratiform Copper Deposits Through Earth History[J]. Economic Geology, 2010, 105:627-639.

[26] 陈根文. 楚雄盆地充填序列及砂岩铜矿成矿模式研究[D]. 长沙:中南大学, 1999:104-114. Chen Genwen. Study on the Folling Sequence and Metalogenic Model of Sandstone Copper Deposits in Chuxiong Basin[D]. Changsha:Central South University, 1999:104-114.

[27] 曹养同, 刘成林, 陈永志, 等. 库车前陆盆地古新近系铜矿化特征及铜的来源、富集分布初探[J]. 地质学报, 2010, 84(12):1791-1804. Cao Yangtong, Liu Chenglin, Chen Yongzhi, et al. Characteristics of Copper Mineralization in the Kuqa Foreland Basin, and Origin, Enrichment and Distribution of Copper[J]. Acta Geologica Sinica, 2010, 84(12):1791-1804.

[28] 曹珂, 李祥辉, 王成善. 白垩纪特殊沉积的古气候指示及红层定量古温度测量研究[J]. 四川地质学报, 2006, 24(6):199-204. Cao Ke, Li Xianghui, Wang Chengshan. Paleoclimate Indicator and Quantitative Determination of Paleotemperature in the Cretaceous Red Beds[J]. Acta Geologica Sichuan, 2006, 24(6):199-204.

[29] 金鑫, 王进, 陈天虎, 等. 铁氧化物对硫酸盐还原菌分解硫酸盐矿物的协同作用[J]. 矿物学报, 2010, 30(3):343-348. Jin Xin, Wang Jin, Chen Tianhu, et al. The Synergistic Influence of Iron Oxide on the Dissolution of Sulfate Mineral[J]. Acta Mineralogica Sinica, 2010, 30(3):343-348.

[30] 庄汉平, 冉崇英, 何明勤, 等. 滇中砂岩铜矿成矿过程中水-岩反应的证据与机理[J]. 地球科学:中国地质大学学报, 1996, 21(3):327-331. Zhuang Hanping, Ran Chongying, He Mingqin, et al. Evidence and Mechanism of Water-Rock Interaction During Mineralization of Sandstone-Hosted Copper Deposits in Central Yunnan Province[J]. Earth Science:Journal of China University of Geoscience, 1996, 21(3):327-331.

[31] 张凤君,王怀远,王广华, 等. CO2流体与储层砂岩相互作用机理实验[J]. 吉林大学学报(地球科学版), 2012, 42(3):821-826. Zhang Fengjun, Wang Huaiyuan, Wang Guanghua, et al. Experiment on Mechanism of CO2 Fluid Interacting with Sandstone Layer[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3):821-826.

[32] 张哨楠. 四川盆地西部须家河组砂岩储层成岩作用及致密时间讨论[J]. 矿物岩石, 2009, 29(4):33-38. Zhang Shaonan. Discussion on the Diagenesis and Timing of Tight Sandstone Reservoir in Xujiahe Formation, Western Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2009, 29(4):33-38.

[33] 刘宝珺, 张锦泉. 沉积成岩作用[M]. 北京:科学出版社, 1992:214-234. Liu Baojun, Zhang Jinquan. Sedimentary Diagenesis[M]. Beijing:Science Press, 1992:214-234.

[1] Zhang Cong, Shi Dishi, Zhang Ziya, Chen Ke, Yuan Kun, Qiao Jihua, Peng Fangping. Basement Structure of Western Chuxiong Basin in Yunnan Province: Using High-Precision Gravity-Magnetic-Electrical Survey [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 863-871.
[2] Chen Ruili, Chen Zhengle, Wu Junjie, Liang Zhilu, Han Fengbin, Wang Yong, Xiao Changhao, Wei Liangxi, Shen Tao. Fluid Inclusions and S-Pb Isotopes in Zaozigou Gold Deposit, Hezuo in Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 87-104.
[3] Zhao Yande, Qi Yalin, Luo Anxiang, Cheng Dangxing, Li Jihong, Huang Jinxiu. Application of Fluid Inclusions and Dating of Authigenic Illite in Reconstruction Jurassic Reservoirs Hydrocarbon Filling History,Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1637-1648.
[4] Han Runsheng, Li Bo, Ni Pei, Qiu Wenlong, Wang Xudong, Wang Tiangang. Infrared Micro-Thermometry of Fluid Inclusions in Sphalerite and Geological Significance of Huize Super-Large Zn-Pb-(Ge-Ag) Deposit, Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 91-104.
[5] Chen Yongqing,Zhou Ding,Guo Lingfen. Genetic Study on the Huaaobaote Pb-Zn-Ag Polymetallic Deposit in Inner Mongolia:Evidence from Fluid Inclusions and S,Pb,H,O Isotopes [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1478-1491.
[6] Ding Qingfeng, Jin Shengkai, Wang Guan, Zhang Benlong. Ore-Forming Fluid of the Guoluolongwa Gold Deposit in Dulan County,  Qinghai Province [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 415-426.
[7] Zhang Yong, Sun Jing-gui, Chen Dong, Xing Shu-wen, Song Quan-heng, Zhao Zhi,Zhao Ke-qiang, Bai Ling-an, Han Shi-jiong. Characteristics of Fluid Inclusions and Metallogenic Model of Tianbaoshan Polymetallic Ore Field,Yanbian,China [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1665-1675.
[8] ZHANG Da-quan, FENG Cheng-you, LI Da-xin, CHEN Yu-chuan, ZENG Zai-lin. Fluid Inclusions Characteristics and Ore Genesis of Taoxikeng Tungsten and Tin Deposit in Chongyi County, Jiangxi Province [J]. J4, 2012, 42(2): 374-383.
[9] YANG Shuai-shi, WANG Ke-yong, HAO Tong-shun, SUN Feng-yueu, LIU Zheng-hong, WAN Duo, ZHANG Xiao-dong, HUANG Jun-peng, BIAN Hong-ye. Characteristics of Fluid Inclusions and Genesis of Sidaogou Gold Deposit in Dandong Area|Liaoning Province [J]. J4, 2010, 40(4): 773-780.
[10] FENG Guang-ying, LIU Shen, PENG Jian-tang, ZHANG Zheng-wei, QI Hua-wen, ZHU Xiao-qing, XIAO Jia-fei, WANG Chang-hua. Characteristics of Fluid Inclusions from Tamu-Kalangu Lead-Zinc Metallogenic Belt, Xinjiang [J]. J4, 2009, 39(3): 406-414.
[11] LIU Yun-hua,FU Jian-ming,LONG Bao-lin,WEI Jun-qi,LIU Guo-qing,YANG Xiao-jun,YANG Yong-qiang. He and Ar Isotopic Components of Main Tin Deposits from Central Nanling Region and Its Signification [J]. J4, 2006, 36(05): 774-780.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!