Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (2): 563-568.doi: 10.13278/j.cnki.jjuese.201602206
Previous Articles Next Articles
Qin Xiwen1,2,3, Liu Yuanyuan2, Wang Xinmin2, Dong Xiaogang2, Zhang Yu2, Zhou Hongmei2
CLC Number:
[1] 刘贺,张弘强.基于粒子群优化神经网络算法的深基坑变形预测方法[J].吉林大学学报(地球科学版),2014,44(5):1609-1614. Liu He, Zhang Hongqiang. A Prediction Method for the Deformation of Deep Foundation Pit Based on the Particle Swarm Optimization Neural Network[J]. Journal of Jilin University(Earth Science Edition), 2014,44(5):1609-1614.[2] 蒋玲玲,熊德琪,张新宇.大连滨海湿地景观格局变化及其驱动机制[J].吉林大学学报(地球科学版),2008,38(4):673-674. Jiang Lingling, Xiong Deqi, Zhang Xinyu. Change of Landscape Pattern and Its Driving Mechanism of the Coastal Wetland in Dalian City[J].Journal of Jilin University(Earth Science Edition),2008,38(4):673-674.[3] 董志颖,李兵,孙晶.GIS支持下的吉林西部水质预警系统[J].吉林大学学报(地球科学版),2003,33(1):56-58. Dong Zhiying, Li Bing, Sun Jing. The Research of Forecast of Water Quality in the Western Part of Jilin Province by Means of GIS[J].Journal of Jilin University(Earth Science Edition),2003,33(1):56-58.[4] 潘保芝, 石玉江, 蒋必辞.致密砂岩气层压裂产能及等级预测方法[J]. 吉林大学学报(地球科学版), 2015, 45(2):649-654. Pan Baozhi, Shi Yujiang, Jiang Bici.Research on Gas Yield and Level Predition for Post-Frac Tight Sandstone Reservoirs[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2):649-654.[5] 张艺耀,苗冠鸿.影响PM2.5因素的多元统计分析与预测[J].资源节约与环保,2013(11):13-16. Zhang Yiyao, Miao Guanhong. The Factors Affecting PM2.5 and PM2.5 Forecasting Based on Multivariate Statistical Analysis[J].Resource Economization & Environment Protection, 2013(11):13-16.[6] 张怡文,胡静宜,王冉.基于神经网络的PM2.5预测模型研究[J].江苏师范大学学报(自然科学版),2015, 33(1):63-65. Zhang Yiwen, Hu Jingyi, Wang Ran. PM2.5 Prediction Model Based on Neural Network[J].Journal of Jiangsu Normal University (Natural Science Edition), 2015, 33(1):63-65.[7] 王敏, 邹滨, 郭宇. 基于BP人工神经网络的城市PM2.5浓度空间预测[J].环境污染与防治,2013,35(9):63-70. Wang Min, Zou Bin, Guo Yu. BP Artificial Neural Network-Based Analysis of Spatial Variability of Urban PM2.5 Concentration[J].Environmental Pollution & Control,2013,35(9):63-70.[8] Zhou Qingping, Jiang Haiyan. A Hybrid Model for PM2.5 Forecasting Based on Ensemble Empirical Mode Decomposition and a General Gegression Neural Network[J]. Science of the Total Environment,2014, 496:264-274.[9] Huang N E,Shen Z. The Empirical Mode Decomposition and Hillbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society London, 1998,454:903-995.[10] Wu Zhaohua,Huang Norden E.A Study of the Ch-aracteristics of White Noise Using the Empirical Mode Decomposition Method[J].Proceedings of the Royal Society,2004, 460:1597-1611.[11] Vapnik V. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995.[12] 刘子阳,郭崇慧.应用支持向量回归方法预测胎儿体重[D].大连:大连理工大学,2005. Liu Ziyang, Guo Chonghui. Fetal Weight Prediction by Using Support Vector Regression[D].Dalian:Dalian University of Technology,2005.[13] 范瑜,邹塞.徐州市春季PM10及PM2.5污染来源分析[J].环境科技,2014,27(2):49-52. Fan Yu, Zou Sai.Analysis of the PM10& PM2.5 Pollution Sources of Xuzhou in Spring[J].Environmental Science and Technology, 2014,27(2):49-52.[14] 蔡赟姝,卢志明.基于经验模态分解的上证综合指数时间序列分析[J].上海大学学报(自然科学版),2012,18(4):384-389. Cai Yunshu, Lu Zhiming.The Shanghai Composite Index Time Series Analysis Based on Empirical Mode Decomposition[J].Journal of Shanghai University(Natural Science Edition),2012,18(4):384-389. |
[1] | Wang Jie, Gong Huili, Chen Beibei, Gao Mingliang, Zhou Chaofan, Liang Yue, Chen Wenfeng. Periodical Analysis of Land Subsidence in Beijing Plain Based on Morlet Wavelet Technology [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 836-845. |
[2] | Pan Baozhi, Shi Yujiang, Jiang Bici, Liu Dan, Zhang Haitao, Guo Yuhang, Yang Xiaoming. Research on Gas Yield and Level Prediction for Post-Frac Tight Sandstone Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 649-654. |
[3] | WEN Zhong-hui, REN Hua-zhun, SHU Long-cang, WANG En, KE Ting-ting, CHEN Rong-bo. Daily Discharge Forecast of Karst Underground River on Non-Linear Time Series Model of A Small Sample [J]. J4, 2011, 41(2): 455-458. |
[4] | DENG Xiao-ying, LI Yue. Support Vector Regression Based on Ricker Wavelet Kernel Function and Its Application to Seismic Prospecting Data Denoising [J]. J4, 2007, 37(4): 821-0827. |
|