Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (2): 563-568.doi: 10.13278/j.cnki.jjuese.201602206

Previous Articles     Next Articles

PM2.5 Prediction of Beijing City Based on Ensemble Empirical Mode Decomposition and Support Vector Regression

Qin Xiwen1,2,3, Liu Yuanyuan2, Wang Xinmin2, Dong Xiaogang2, Zhang Yu2, Zhou Hongmei2   

  1. 1. Graduate School, Changchun University of Technology, Changchun 130012, China;
    2. School of Basic Sciences, Changchun University of Technology, Changchun 130012, China;
    3. Automotive Engineering Research Institute, Changchun University of Technology, Changchun 130012, China
  • Received:2015-07-01 Published:2016-03-26
  • Supported by:

    Supported by National Natural Science Foundation of China(11301036,11226335,51278065)and Scientific Research Project of Jilin Province Department of Education(No.127 in 2014,No.142 in 2013)

Abstract:

In order to obtain the pattern of variation of PM2.5 concentrations in the atmosphere in Beijing City, we build a EEMD-SVR hybrid model that can predict the PM2.5 level in a short term. Firstly, according to the ensemble empirical mode decomposition (EEMD) method to analyse the PM2.5 of Beijing City, the original time series is decomposed into the series of intrinsic mode functions (IMFs) and trend items; then, the periodic variation characteristics of PM2.5 is revealed through the periodic analysis of each intrinsic mode function;finally, we use support vector regression (SVR) to forecast all IMFs and trend items, which reflect the rationality of using SVR model. The results show that the prediction accuracy of mixed EEMD-SVR model is higher than single SVR model.

Key words: ensemble empirical mode decomposition, intrinsic mode functions (IMF), periodicity, support vector regression

CLC Number: 

  • C81

[1] 刘贺,张弘强.基于粒子群优化神经网络算法的深基坑变形预测方法[J].吉林大学学报(地球科学版),2014,44(5):1609-1614. Liu He, Zhang Hongqiang. A Prediction Method for the Deformation of Deep Foundation Pit Based on the Particle Swarm Optimization Neural Network[J]. Journal of Jilin University(Earth Science Edition), 2014,44(5):1609-1614.

[2] 蒋玲玲,熊德琪,张新宇.大连滨海湿地景观格局变化及其驱动机制[J].吉林大学学报(地球科学版),2008,38(4):673-674. Jiang Lingling, Xiong Deqi, Zhang Xinyu. Change of Landscape Pattern and Its Driving Mechanism of the Coastal Wetland in Dalian City[J].Journal of Jilin University(Earth Science Edition),2008,38(4):673-674.

[3] 董志颖,李兵,孙晶.GIS支持下的吉林西部水质预警系统[J].吉林大学学报(地球科学版),2003,33(1):56-58. Dong Zhiying, Li Bing, Sun Jing. The Research of Forecast of Water Quality in the Western Part of Jilin Province by Means of GIS[J].Journal of Jilin University(Earth Science Edition),2003,33(1):56-58.

[4] 潘保芝, 石玉江, 蒋必辞.致密砂岩气层压裂产能及等级预测方法[J]. 吉林大学学报(地球科学版), 2015, 45(2):649-654. Pan Baozhi, Shi Yujiang, Jiang Bici.Research on Gas Yield and Level Predition for Post-Frac Tight Sandstone Reservoirs[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2):649-654.

[5] 张艺耀,苗冠鸿.影响PM2.5因素的多元统计分析与预测[J].资源节约与环保,2013(11):13-16. Zhang Yiyao, Miao Guanhong. The Factors Affecting PM2.5 and PM2.5 Forecasting Based on Multivariate Statistical Analysis[J].Resource Economization & Environment Protection, 2013(11):13-16.

[6] 张怡文,胡静宜,王冉.基于神经网络的PM2.5预测模型研究[J].江苏师范大学学报(自然科学版),2015, 33(1):63-65. Zhang Yiwen, Hu Jingyi, Wang Ran. PM2.5 Prediction Model Based on Neural Network[J].Journal of Jiangsu Normal University (Natural Science Edition), 2015, 33(1):63-65.

[7] 王敏, 邹滨, 郭宇. 基于BP人工神经网络的城市PM2.5浓度空间预测[J].环境污染与防治,2013,35(9):63-70. Wang Min, Zou Bin, Guo Yu. BP Artificial Neural Network-Based Analysis of Spatial Variability of Urban PM2.5 Concentration[J].Environmental Pollution & Control,2013,35(9):63-70.

[8] Zhou Qingping, Jiang Haiyan. A Hybrid Model for PM2.5 Forecasting Based on Ensemble Empirical Mode Decomposition and a General Gegression Neural Network[J]. Science of the Total Environment,2014, 496:264-274.

[9] Huang N E,Shen Z. The Empirical Mode Decomposition and Hillbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society London, 1998,454:903-995.

[10] Wu Zhaohua,Huang Norden E.A Study of the Ch-aracteristics of White Noise Using the Empirical Mode Decomposition Method[J].Proceedings of the Royal Society,2004, 460:1597-1611.

[11] Vapnik V. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995.

[12] 刘子阳,郭崇慧.应用支持向量回归方法预测胎儿体重[D].大连:大连理工大学,2005. Liu Ziyang, Guo Chonghui. Fetal Weight Prediction by Using Support Vector Regression[D].Dalian:Dalian University of Technology,2005.

[13] 范瑜,邹塞.徐州市春季PM10及PM2.5污染来源分析[J].环境科技,2014,27(2):49-52. Fan Yu, Zou Sai.Analysis of the PM10& PM2.5 Pollution Sources of Xuzhou in Spring[J].Environmental Science and Technology, 2014,27(2):49-52.

[14] 蔡赟姝,卢志明.基于经验模态分解的上证综合指数时间序列分析[J].上海大学学报(自然科学版),2012,18(4):384-389. Cai Yunshu, Lu Zhiming.The Shanghai Composite Index Time Series Analysis Based on Empirical Mode Decomposition[J].Journal of Shanghai University(Natural Science Edition),2012,18(4):384-389.

[1] Wang Jie, Gong Huili, Chen Beibei, Gao Mingliang, Zhou Chaofan, Liang Yue, Chen Wenfeng. Periodical Analysis of Land Subsidence in Beijing Plain Based on Morlet Wavelet Technology [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 836-845.
[2] Pan Baozhi, Shi Yujiang, Jiang Bici, Liu Dan, Zhang Haitao, Guo Yuhang, Yang Xiaoming. Research on Gas Yield and Level Prediction for Post-Frac Tight Sandstone Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 649-654.
[3] WEN Zhong-hui, REN Hua-zhun, SHU Long-cang, WANG En, KE Ting-ting, CHEN Rong-bo. Daily Discharge Forecast of Karst Underground River on Non-Linear Time Series Model of A Small Sample [J]. J4, 2011, 41(2): 455-458.
[4] DENG Xiao-ying, LI Yue. Support Vector Regression Based on Ricker Wavelet Kernel Function and Its Application to Seismic Prospecting Data Denoising [J]. J4, 2007, 37(4): 821-0827.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!