Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (4): 1026-1041.doi: 10.13278/j.cnki.jjuese.201604104

Previous Articles     Next Articles

Global Early Paleozoic Orogens (Ⅳ): Plate Reconstruction and Supercontinent Carolina

Li Sanzhong1,2,3, Yang Zhao1,2, Zhao Shujuan1,2, Liu Xin1,2, Yu Shan1,2, Li Xiyao1,2, Guo Lingli1,2, Suo Yanhui1,2, Dai Liming1,2, Guo Runhua1,2, Zhang Guowei1,2   

  1. 1. College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China;
    2. Key Lab of Submarine Geosciences and Prospecting Technique, Ministry of Education, Qindao 266100, Shandong, China;
    3. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, Shandong, China
  • Received:2016-03-16 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by Key Project of NSFC (Grants 41190072, 41190070, U1606401); NSFC for Distinguished Young Scientists (41325009); Taishan Scholor Program and Aoshan Elite Scientist Plan to Prof. Sanzhong Li

Abstract:

Paleoproterozoic and Phanerozoic plate tectonics and periodic evolutionary processes have obvious difference, reflecting in the geological records developed in two different plate tectonic regimes. The Early Paleozoic is a transition era of these two regimes, the Early Paleozoic tectonic processes and plate reconstructions are the key to understand tectonic mechanism and cycle of the Earth's plate tectonics. This paper summarizes and compares the global geological events of the Early Paleozoic collisional orogenic belts since the rifting of the Supercontinent Rodinia based on the analysis of the evolutions of the Early Paleozoic collisional orogenic belts, summing up seven Gondwana-, Larussia-, Paleo-Chinese blocks-related collisional or accretionary orogenic events: the Brasiliano Orogeny, East African Orogeny, the Kuunga Orogeny, the Caledonian-stage proto-Tethyan- and Paleo-Asian Ocean-related orogeny in East Asia, and classic Caledonian Orogeny, central Eurasian Caledonian suturing, Appalachian Orogeny. After synthesizing seven-stage orogneic events, based on the combination of paleomagnetism, paleontology and paleogeographic data, this paper reconstructs assembly processes of global plates from the Neoproterozoic to Early Paleozoic as follows. Supercontient Rodinia began to experience three stages of rifting since the Neoproterozoic ~950 Ma, developing the Panthalassa, Mozambique and the Paleo-Pacific oceans. The Iapetus ocean opened in 615-560 Ma. In about 560 Ma the dispersal of the Baltica from the West Gondwana resulted in the opening of the narrow Ran Ocean. The Brasiliano Orogeny, the East African orogeny and the Kuunga orogeny in the southern hemisphere completed the final assembly of the Gondwanaland in ~540 Ma. Some terranes in the western segment of the northern margin of the Gondwana locally drifted away to result inthe opening of the Rheic and the Tornquist oceans since ~500 Ma. In ~420 Ma the formation of the classic Caledonian orogenic belt and the Central Eurasian suture zone closed the Iapetus Ocean. Coevally the Svalbard and the United Kingdom may be located in southeast of the Greenland Shield, and some micro-continental blocks such as the North China block docked in the eastern segment of the northern margin of the Gondwanaland. Since 425 Ma the Siberia plate had a trend away from the assembled Larussia Continent, but the South and North American plates were closer and closer in Late Ordovician-Early Devonian, and it resulted in the collision between the North American plate and the terrances on the northern margin of peri-Gondwana. In about 400 Ma, the mixed biota in the South and North America and palaeogeographic reconstruction shows the South and North America were very closer, so we speculated that one supercontinent may existed and called the Supercontinent Carolina in this paper, because the Carolina orogenic belt is the potential final collisional zone. Based on this supercontinent, this paper proposes that the supercontinent cycle is 700 Myr.

Key words: Early Paleozoic, orogenic belt, ocean-continent configuration, plate reconstruction, supercontinent, Rodinia, Gondwana, Pangea

CLC Number: 

  • P542

[1] 李江海, 牛向龙, Kusky T, 等. 从全球对比探讨华北克拉通早期地质演化与板块构造过程[J]. 地学前缘, 2004, 11(3):273-283. Li Jianghai, Niu Xianglong, Kusky T, et al. Neoarchean Plate Tectonic Evolution of North China and Its Correlation with Global Cratonic Blocks[J]. Earth Science Frontiers, 2004, 11(3):273-283.

[2] Brown M. Metamorphism, Plate Tectonics, and the Supercontinent Cycle[J]. Earth Science Frontiers, 2007, 14(7): 1-18.

[3] Piper J D A.A Planetary Perspective on Earth Evolution: Lid Tectonics Before Plate Tectonics[J]. Tectonophysics, 2013(589): 44-56.

[4] Piper J D A. Continental Velocity Through Geological Time: The Link to Magmatism, Crustal Accretion and Episodes of Global Cooling[J]. Geoscience Frontiers, 2013(4): 7-36.

[5] Rogers J J W, Unrug R, Sultan M. Tectonic Assembly of Gondwana[J]. Journal of Geodynamics, 1995(19): 1-34.

[6] Yakubchuk A. Restoring the Supercontinent Columbia and Tracing Its Fragments After Its Breakup: A New Configuration and A Super-Horde Hypothesis[J]. Journal of Geodynamics, 2010 (50): 166-175.

[7] Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic Supercontinent[J].Gondwana Research, 2002(5): 5-22.

[8] Zhao G C, Cawood P A, Simon A W, et al. Review of Global 2.1-1.8 Ga Orogen: Implications for a Pre-Rodinia Supercontinent[J]. Earth-Science Reviews, 2002 (59): 125-162.

[9] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup[J]. Earth-Science Reviews, 2004, 67(1): 91-123.

[10] Dalziel I W D. Overview: Neoproterozoic-Paleozoic Geography and Tectonics: Review, Hypothesis, Environmental Speculation[J]. Geological Society of America Bulletin, 1997, 109(1): 16-42.

[11] Pisarevsky S A, Wingate M T D, Powell C M, et al. Models of Rodinia Assembly and Fragmentation[J]. Geological Society London Special Publications, 2003, 206(1): 35-55.

[12] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.

[13] Li Z X, Evans D A D, Halverson G P. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294(3): 219-232.

[14] Hoffman P F. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?[J]. Science, 1991, 252(5011): 1409-1412.

[15] Evans D A D.The Palaeomagnetically Viable, Longlived and All-Inclusive Rodinia Supercontinent Reconstruction[J]. Geological Society of London Special Publication, 2009 (327): 371-404.

[16] Stampfli G M, Borel G D.A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons[J].Earth & Planetary Science Letters, 2002, 196(1/2): 17-33.

[17] Stampfli G M, Hochard C, Vérard C, et al. The Formation of Pangea[J]. Tectonophysics, 2013, 593(3): 1-19.

[18] Senshu H, Maruyama S, Rino S. Role of Tonalite-Trodhjemite-Granite(TTG)Crust Subduction on the Mechanism of Supercontinent Breakup[J]. Gondwana Reseach, 2009, 15(3/4): 433-442.

[19] Powell C M, Li Z X, Mcelhinny M W, et al. Paleomagnetic Constraints on Timing of the Neoproterozoic Breakup of Rodinia and the Cambrian Formation of Gondwana[J]. Geology, 1993, 21(10): 889-892.

[20] Dalziel I W D. Overview: Neoproterozoic-Paleozoic Geography and Tectonics: Review, Hypothesis, Environmental Speculation[J]. Geological Society of America Bulletin, 1997, 109(1): 16-42.

[21] Rino S, Kon Y, Sato W. The Grenvillian and Pan-African Orogens: World's Largest Orogenies Through Geologic Time, and Their Implications on the Origin of Superplume[J]. Gondwana Research, 2008, 14(1/2): 51-72.

[22] Evans D A D. Reconstructing Pre-Pangean Supercontinents[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1735-1751.

[23] 陆松年. 初论"泛华夏造山作用"与加里东和泛非造山作用的对比[J]. 地质通报, 2004, 23(增刊2): 952-958. Lu Songnian. Comparison of the Pan-Cathaysian Orogeny with the Caledonian and Pan-African Orogenies[J]. Geological Bulletin of China, 2004, 23(Sup.2): 952-958.

[24] 陆松年, 于海峰, 李怀坤, 等. 中央造山带(中西部)前寒武系地质[M]. 北京: 地质出版社, 2009. Lu Songnian, Yu Haifeng, Li Huaikun, et al. Precambrian Geology of the Central-West Segments of Central Orogenic Belt[M]. Beijing: Geological Publishing House, 2009.

[25] 尹赞勋, 张守信, 谢翠华. 论褶皱幕[M]. 北京: 科学出版社, 1978. Yi Zanxun, Zhang Shouxin, Xie Cuihua. On Folding Stage[M]. Beijing: Science Press, 1978.

[26] Valentino D W, Valentino R W, Hill M L. Paleozoic Transcurrent Conjugate Shear Zones in the Central Appalachian Piedmont of Southeastern Pennsylvania[J]. Journal of Geodynamics, 1995, 19(3/4): 303-324.

[27] Dallmeyer R D, Gee D G. 40Ar/39Ar Mineral Dates from Retrogressed Eclogites within the Baltoscandian Miogeocline: Implications for a Polyphase Caledonian Orogenic Evolution[J]. Geological Society of America Bulletin, 1986 (87): 26-34.

[28] Atherton M P, Ghani A A. Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic(Metamorphic)Zone of Scotland and Donegal, Ireland[J]. Lithos, 2002, 62(3): 65-85.

[29] Torsvik T H, Rehnström E F.The Tornquist Sea and Baltica-Avalonia Docking[J]. Tectonophysics, 2003, 362(1): 67-82.

[30] Sasseville C, Tremblay A, Clauer N, et al. K-Ar Age Constraints on the Evolution of Polydeformed Fold-Thrust Belts: The Case of the Northern Appalachians(Southern Quebec)[J]. Journal of Geodynamics, 2008, 45(Sup.2/3): 99-119.

[31] Zagorevski A, Staal C R, Mcnicoll V J. Tectonic Architecture of an Arc-Arc Collision Zone, Newfoundland Appalachians[J]. Geological Society of America Abstracts with Programs, 2008, 42(1): 174.

[32] Hibbard J P, Stoddard E F, Secor D T, et al. The Carolina Zone: Overview of Neoproterozoic to Early Paleozoic Peri-Gondwanan Terranes Along the Eastern Flank of the Southern Appalachians[J]. Earth-Science Reviews, 2012(57): 299-339.

[33] Janák M, Roermund H V, Majka J, et al. UHP Metamorphism Recorded by Kyanite-Bearing Eclogite in the Seve Nappe Complex of Northern Jamtland, Swedish Caledonides[J]. Gondwana Research, 2013, 23(3): 865-879.

[34] Schuff M M, Gore J P, Nauman E A. Stratigraphic, Geochemical and U-Pb Zircon Constraints from Slieve Gallion, Northern Ireland: A Correlation of the Irish Caledonian Arcs[J]. Journal of the Geological Society, 2013, 170(5): 737-752.

[35] Cawood P A, Nemchin A A, Freeman M, et al. Linking Source and Sedimentary Basin: Detrital Zircon Record of Sediment Flux Along a Modern River System and Implications for Provenance Studies[J]. Earth & Planetary Science Letters, 2003, 210(Sup.1/2): 259-268.

[36] Owona S, Schulz B, Ratschbacher L, et al. Pan-African Metamorphic Evolution in the Southern Yaounde Group(Oubanguide Complex, Cameroon)as Revealed by EMP-Monazite Dating and Thermobarometry of Garnet Metapelites[J]. Journal of African Earth Sciences, 2011, 59(1): 125-139.

[37] Stampfli G M, Hochard C, Vérard C, et al. The Formation of Pangea[J]. Tectonophysics, 2013, 593(3): 1-19.

[38] Waele B D, Johnson S P, Pisarevsky S A. Palaeoproterozoic to Neoproterozoic Growth and Evolution of the Eastern Congo Craton: Its Role in the Rodinia Puzzle[J]. Precambrian Research, 2008, 160(160): 127-141.

[39] Bingen B, Jacobs J, Viola G, et al. Geochronology of the Precambrian Crust in the Mozambique Belt in NE Mozambique, and Implications for Gondwana Assembly[J]. Precambrian Research, 2009, 170(3): 231-255.

[40] Collins A S, Clark C, Plavsa D. Peninsular India in Gondwana: The Tectonothermal Evolution of the Southern Granulite Terrain and Its Gondwanan Counterparts[J]. Gondwana Research, 2014, 25(1): 190-203.

[41] 王行军, 王根厚, 专少鹏, 等. 中天山晚奥陶世碰撞造山: 来自变质花岗岩地球化学及年代学证据[J]. 岩石学报, 2011, 27(7): 2203-2212. Wang Xingjun, Wang Genhou, Zhuan Shaopeng, et al. Late Ordovician Collision and Orogen in Middle Tianshan: Evidences of Geochemical Analyses and Geochronology on Metamorphosed Granitoid Rocks[J]. Acta Petrologica Sinica, 2011, 27(7): 2203-2212.

[42] 朱志新. 新疆南天山地质组成和构造演化[D]. 北京:中国地质科学院, 2007. Zhu Zhixin. The Geological Components and Tectonic Evolution of South Tianshan, Xinjiang[D]. Beijing: Chinese Academy of Geological Sciences, 2007.

[43] 罗明非. 甘肃党河南山早古生代大地构造性质研究[D]. 成都: 成都理工大学, 2010. Luo Mingfei. Research on Early Palaeozoic Tectonic Characters of Danghenanshan, Gansu[D].Chengdu:Chengdu University of Technology, 2010.

[44] 王涛, 王晓霞, 田伟, 等. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J]. 中国科学:D辑, 2009(7): 949-971. Wang Tao, Wang Xiaoxia, Tian Wei, et al. North Qinling Palezoic Granite Associations and Their Variation in Space and Time: Implication for Orogenic Processes in the Orogens of Central China[J]. Science in China:Series D, 2009 (7): 949-971.

[45] 车自成, 罗金海, 刘良, 等. 中国及其邻区区域大地构造学[M]. 北京: 科学出版社, 2011: 1-466. Che Zicheng, Luo Jinhai, Liu Liang, et al. Tectonics in China and Its Adjacent Area[M]. Beijing: Science Press, 2011: 1-466.

[46] Meng F, Zhang J, Cui M. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance[J]. Gondwana Research, 2013, 23(2): 825-836.

[47] Meng F, Cui M, Wu X, et al. Heishan Mafic-Ultramafic Rocks in the Qimantag Area of Eastern Kunlun, NW China: Remnants of an Early Paleozoic Incipient Island Arc[J]. Gondwana Research, 2013, 27(2): 745-759.

[48] Zhou J B, Wilde S A, Zhao G C, et al. Shrimp U-Pb Zircon Dating of the Neoproterozoic Penglai Group and Archean Gneisses from the Jiaobei Terrane, North China, and Their Tectonic Implications[J]. Precambrian Research, 2008, 160(Sup.3/4): 323-340.

[49] Zhou J B, Wilde S A.The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1365-1377.

[50] Fritz H, Abdelsalam M, Ali K A, et al. Orogen Styles in the East African Orogen: A Review of the Neoproterozoic to Cambrian Tectonic Evolution[J]. Journal of African Earth Sciences, 2013, 86(4): 65-106.

[51] Hibbard J P, Van Staal C R.A Paleogeographical Review of the Peri-Gondwanan Realm of the Appalachian Orogen[J]. Canadian Journal of Earth Sciences, 2012, 49(1): 259-288.

[52] Fitzsimons I C W. Proterozoic Basement Provinces of Southern and Southwestern Australia, and Their Correlation with Antarctica[J]. Geological Society of London Special Publications, 2003, 206(1): 93-130.

[53] Peter A, Cawood, Craig Buchan. Linking Accretionary Orogenesis with Supercontinent Assembly[J]. Earth-Science Reviews, 2007, 82(Sup.3/4): 217-256.

[54] Collins A S, Clark C, Plavsa D. Peninsular India in Gondwana: The Tectonothermal Evolution of the Southern Granulite Terrain and Its Gondwanan Counterparts[J]. Gondwana Research, 2014, 25(1): 190-203.

[55] Meert J G.A Synopsis of Events Related to the Assembly of Eastern Gondwana[J]. Tectonophysics, 2003, 362(1/2/3/4): 1-40.

[56] 徐学义, 何世平, 王洪亮, 等. 中国西北部地质概论[M]. 北京: 科学出版社, 2008: 1-338. Xu Xueyi, He Shiping, Wang Hongliang, et al. An Introduction to the Geology in Northwest China[M].Beijing: Science Press, 2008: 1-338.

[57] Powell C M, Li Z X, Mcelhinny M W, et al. Palaeomagnetic Constraints of the Neoproterozoic Breakup of Rodinia and the Cambrian Formation of Gondwana[J]. Geology, 1993, 21(10): 889-892.

[58] Yoshida M. Assembly of East Gondwana During the Mesoproterozoic and Its Rejuvenation During the Pan-African Period[J]. Geolological Society of India Memoirs, 1995(34): 22-45.

[59] Veevers J J. Pan-African Is Pan-Gondwanaland: Oblique Convergence Drives Rotation During 650-500 Ma Assembly[J]. Geology, 2003,31:501-504.

[60] Veevers J J. Gondwanaland from 650-500 Ma Assembly Through 320 Ma Merger in Pangea to 185-100 Ma Breakup: Supercontinental Tectonics Via Stratigraphy and Radiometric Dating[J]. Earth-Science Reviews, 2004, 68(Sup.1/2): 1-132.

[61] Squire R J, Campbell I H, Allen C M, et al. The Transgondwanan Supermountain: A Trigger for the Cambrian Explosion[J]. Geochmica et Cosmochimica Acta, 2006, 70(18): A608.

[62] Fitzsimons I C W, Hulscher B. Out of Africa: Detrital Zircon Provenance of Central Madagascar and Neoproterozoic Terrane Transfer Across the Mozambique Ocean[J]. Terra Nova, 2005, 17(3): 224-235.

[63] Meert J G, Lieberman B S.The Neoproterozoic Assembly of Gondwana and Its Relationship to the Ediacaran-Cambrian Radiation[J]. Gondwana Research, 2008, 14(1/2): 5-21.

[64] Torsvik T H, Rehnstrom E F.The Tornquist Sea and Baltica-Avalonia Docking[J]. Tectonophysics, 2003, 362(1): 67-82.

[65] Liu X, Zhao Y, Hu J. The C. 1 000-900 Ma and C. 550-500 Ma Tectonothermal Events in the Prince Charles Mountains-Prydz Bay Region, East Antarctica, and Their Relations to Supercontinent Evolution[J]. Geological Society London Special Publications, 2013, 383(1): 95-112.

[66] Cocks L R M, Torsvik T H. The Palaeozoic Geography of Laurentia and Western Laurussia: A Stable Craton with Mobile Margins[J]. Earth-Science Reviews, 2011, 106(1/2): 1-51.

[67] Golonka J, Gaw A. Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic[M].Vienna:Intech,2012:261-282.

[68] Yao W H, Li Z X, Li W X, et al. Detrital Provenance Evolution of the Ediacaran-Silurian Nanhua Foreland Basin, South China[J]. Gondwana Research, 2014, 28(4):1449-1465.

[69] Boucot A J, Scotese C R. Pangaean Assembly and Dispersal with Evidence from Global Climate Belts[J]. Journal of Palaeogeography, 2012, 1(1): 5-13.

[70] 高长林, 单翔麟, 秦德余. 中国古生代盆地基底大地构造特征[J]. 石油实验地质, 2005, 27(6): 551-558. Gao Changlin, Shan Xianglin, Qin Deyu.The Basement Tectonic Characteristics of the Paleozoic Basin, China[J]. Petroleum Geology Experiment, 2005, 27(6): 551-558.

[71] 董顺利, 李忠, 高剑, 等. 阿尔金祁连昆仑造山带早古生代构造格架及结晶岩年代学研究进展[J]. 地质论评, 2013, 59(4): 731-746. Dong Shunli, Li Zhong, Gao Jian, et al. Progress of Studies on Early Paleozoic Tectonic Framework and Crystalline Rock Geochronology in Altun-Qilian-Kunlun Orogen[J]. Geological Review, 2013, 59(4): 731-746.

[72] Murphy J B, Nance R D, Cawood P A. Contrasting Modes of Supercontinent Formation and the Conundrum of Pangea[J]. Gondwana Research, 2009, 15(Sup.3/4): 408-420.

[73] 蔡志慧, 许志琴, 段向东, 等. 青藏高原东南缘滇西早古生代早期造山事件[J]. 岩石学报, 2013, 29(6): 2123-2140. Cai Zhihui, Xu Zhiqin, Duan Xiangdong, et al. Early Stage of Early Paleozoic Orogenic Event in Western Yunnan Province, Southeastern Margin of Tibet Plateau[J]. Acta Petrologica Sinica, 2013, 29(6): 2123-2140.

[74] 李江海, 王洪浩, 李维波, 等. 显生宙全球古板块再造及构造演化[J]. 石油学报, 2014, 35(2): 208-218. Li Jianghai, Wang Honghao, Li Weibo, et al. Discussion on Global Tectonics Evolution from Plate Reconstruction in Phanerozoic[J]. Acta Petrolei Sinica, 2014, 35(2): 208-218.

[75] Li Z X, Mca C, Powell.An Outline of the Palaegeographic Evolution of the Australian Region Since the Beginning of the Neoproterozoic[J]. Earth-Science Reviews, 2001, 53(3): 237-277.

[76] Nance R, Worsley T, Moody J. The Supercontinent Cycle[J]. Scientific American, 1988, 259(1): 72-79.

[77] Condie K C. Earth as an Evolving Planetary System[M]. 2nd ed. New York:Acadmic Press the Netherlands, 2011:1-574.

[78] Haq B, Stephen R S. A Chronology of Paleozoic Sea-Level Changes[J]. Science, 2008 (322): 64-68.

[79] Boucot A J, Gray J.A Paleozoic Pangaea[J]. Science, 1983, 222(4624): 571-581.

[80] Livermore R A, Smith A G, Briden J C. Palaeomagnetic Constraints on the Distribution of Continents in the Late Silurian and Early Devonian[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1985, 309(1138): 29-56.

[81] Lewandowski M. Assembly of Pangea: Combined Paleomagnetic and Paleoclimatic Approach[J]. Advances in Geophysics, 2003, 46(1): 199-236.

[82] Piper J D A.A~90°Late Siluriane-Early Devonian Apparent Polar Wander Loop: The Latest Inertial Interchange of Planet Earth? [J]. Earth and Planetary Science Letters, 2006 (250): 345-357.

[83] Golonka J, Gaweda A. Plate Tectonic Evolution of the Southern Margin of Laurussia in the in the Paleozoic[M]. Intech:Tectonics-Recent Advances, 2012: 261-282.

[84] Ford D, Golonka J. Phanerozoic Paleogeography, Paleoenvironment and Lithofacies Maps of the Circum-Atlantic Margins[J]. Marine and Petroleum Geology, 2003(20): 249-285.

[85] Hibbard J P, Stoddard E F, Secor D T, et al. The Carolina Zone: Overview of Neoproterozoic to Early Paleozoic Peri-Gondwanan Terranes Along the Eastern Flank of the Southern Appalachians[J]. Earth-Science Reviews, 2002, 57(3): 299-339.

[86] Boucot A J, 陈旭, Scotese C R. 显生宙全球古气候重建[M]. 北京: 科学出版社, 2009:1-173. Boucot A J, Chen Xu, Scotese C R. Global Paleoclimate Reconstruction in Phanerozoic[M].Beijing: Science Press, 2009: 1-173.

[87] Scotese C R, Boucot A J, McKerrow W S. Gondwanan Palaeogeography and Palae-Oclimatology[J]. Journal of African Earth Sciences, 1999, 28(1): 99-114.

[1] Xu Zhihe, Sun Fengyue, Gu Guanwen, Niu Xingguo, Qian Ye. Deep Mineral Exploration   of Magmatic Cu-Ni Sulfide Deposits in the Central Asian Orogenic Belt: Taking Hongqiling Cu-Ni Deposit as an Example [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(5): 1649-1657.
[2] Deng Hongbin, Li Peilong, Wei Huacai, He Wenjin, Yang Pengtao, Li Ning, Tang Hua. Petro-Geochemical Characteristics and Geological Significance of Dishantou Granite Body in East Kunlun Orogenic Belt [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 767-782.
[3] Tan Xiaomiao, Gao Rui, Wang Haiyan, Hou Hesheng, Li Hongqiang, Kuang Zhaoyang. Lower Crust and Moho Structure of the Eastern Segment of the Centeral Asian Orogenic Belt Revealed by Large Dynamite Shots of Deep Seismic Reflection Profile: Data Processing and Preliminary Interpretation [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 898-908.
[4] Xie Fan, Wang Haiyan, Hou Hesheng, Gao Rui. Near-Surface Fine Velocity Structure in Eastern Segment of Central Asian Orogenic Belt: Revealed by First-Arrival Wave Tomography from Deep Seismic Reflection Profile [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 584-596.
[5] Zou Guoqing, Yu Niuben, Sun Guoqing, Huang Xiubao, Nijiati·Abuduxun, Lu Guansong. Geochemical Characteristics and Tectonic Significance of Carboniferous Bimodal Volcanic Rocks in Aoyituolangge Area, Eastern Junggar [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 455-472.
[6] Huang Shiting, Yu Xiaofei, Lü Zhicheng, Liu Jiajun, Li Yongsheng, Du Zezhong, Lü Xin, Sun Hairui, Du Yilun. Characteristics of Gold-Bearing Minerals and Compositions of In-Situ Sulfur of Laojinchang Gold Deposit in Beishan, Gansu Province and Its Ore-Forming Implications [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1387-1403.
[7] Sun Hairui, Lü Zhicheng, Yu Xiaofei, Li Yongsheng, Du Zezhong, Lü Xin, Gong Fanying. Late Paleozoic Tectonic Evolution of Beishan Orogenic Belt: Chronology and Geochemistry Constraints of Early Permian Syenogranitic Porphyry Dyke in Liuyuan Area, Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1433-1449.
[8] Jia Yinggang, Zhao Jun, Jiang Lei, Guan Liwei, Wang Xiaoxuan, He Liang. Early Paleozoic Tectonic Evolution of Northern Yili Block: Evidence from Diorite in Wenquan, Xinjiang [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1015-1038.
[9] Zhang Qiang, Ding Qingfeng, Song Kai, Cheng Long. Detrital Zircon U-Pb Geochronology and Hf Isotope of Phyllite of Langyashan Formation in Hongshuihe Iron Ore District of Eastern Kunlun and Their Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1085-1104.
[10] Lü Bin, Wang Tao, Tong Ying, Zhang Lei, Yang Qidi, Zhang Jianjun. Spatial & Temporal Distribution and Tectonic Settings of Magmatic-Hydrothermal Ore Deposits in the Eastern Central Asia Orogen Belt [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 305-343.
[11] Qi Zhongyou, Feng Zhiqiang, Wen Quanbo, Zhang Tiean, Liu Binqiang, Li Xiaoyu, Du Bingying. Petrogenesis of the Early Paleozoic Diorite in the Northeast Nenjiang Area: Evidence from Zircon U-Pb Chronology and Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 113-125.
[12] Li Sanzhong, Yang Zhao, Zhao Shujuan, Li Xiyao, Suo Yanhui, Guo Lingli, Yu Shan, Dai Liming, Li Shaojun, Mu Dunling. Global Early Paleozoic Orogens (Ⅱ): Subduction-Accretionary-Type Orogeny [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 968-1004.
[13] Li Sanzhong, Yang Zhao, Zhao Shujuan, Li Xiyao, Guo Lingli, Yu Shan, Liu Xin, Suo Yanhui, Lan Haoyuan. Global Early Paleozoic Orogens (Ⅰ): Collision-Type Orogeny [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 945-967.
[14] Zhou Jianbo, Shi Aiguo, Jing Yan. Combined NE China Blocks: Tectonic Evolution and Supercontinent Reconstructions [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1042-1055.
[15] Li Sanzhong, Li Xiyao, Zhao Shujuan, Yang Zhao, Liu Xin, Guo Lingli, Wang Yongming, Hao Yi, Zhang Jian, Hu Mengying. Global Early Paleozoic Orogens (Ⅲ): Intracontinental Orogen in South China [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1005-1025.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XUE Yong-chao, CHENG Lin-song. The Diagenetic Reservoir Facies of Chang 8 Reservoir in Baibao Oilfield[J]. J4, 2011, 41(2): 365 -371 .
[2] JIANG Ji-yi, ZHANG Yu-dong, GU Hong-biao, ZUO Lan-li. Study on the Evaluation Model of Groundwater Environment Evolution Pattern Based on Grey Correlation Entropy[J]. J4, 2009, 39(6): 1111 -1116 .
[3] CONG Yuan, DIAO Peng-da, CHEN Jian-ping, DONG Qing-ji. Grade-Tonnage Model of Bauxite Deposits in China[J]. J4, 2009, 39(6): 1042 -1048 .
[4] LIU Jian-feng, CHI Xiao-guo, ZHOU Yan, WANG Tie-fu,JIN Wei, ZHOU Jian-bo, DONG Chun-yan, LI Guang-rong. Rb-Sr Isotopic Dating of the Jinlin Pluton by Whole Rock-Hornblende Method in the Northeast Xiao Hinggan Mountains[J]. J4, 2005, 35(06): 690 -0693 .
[5] HUANG Guan-xing, SUN Ji-chao, ZHANG Ying, LIU Jing-tao, ZHANG Yu-xi, JING Ji-hong. Content and Relationship of Heavy Metals in Groundwater of Sewage Irrigation Area in Pearl River Delta[J]. J4, 2011, 41(1): 228 -234 .
[6] BI Hai-Tao, ZHANG Lan-Ying, LIU Na, YANG Guo-jun, XU Guo-xin, SHU Bo-lin. Improvement of PVA-H3BO3 Immobilization Method with Inorganic Materials[J]. J4, 2011, 41(1): 241 -246 .
[7] HE Zhong-hua,LIU Zhao-jun,GUO Hong-wei,HOU Wei,DONG Lin-sen. Provenance Analysis of Middle Jurassic Sediments and Its Geological Significance in Mohe Basin[J]. J4, 2008, 38(3): 398 -0404 .
[8] CHEN Xiang, XU Zhao-yi, ZHANG Jie-kun. Comprehensive Classification Criteria and Method to the Building Site of Large Water-Sealed Underground Oil Tank[J]. J4, 2012, 42(1): 177 -183 .
[9] KANG Li-ming,REN Zhan-li. Study on Multi-Parameters Discrimination Method for Flow Units-Taking W93 Wellblock in Ordos Basin as An Example[J]. J4, 2008, 38(5): 749 -0756 .
[10] WANG Zhu-wen, DING Yang, LIU Jing-hua, TIAN Gang. Influence Factors Analyzing and Data Processing of γ-Ray Spectrometry for Liangzhu Ancient Ruins Detection[J]. J4, 2010, 40(2): 439 -446 .