Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (6): 1754-1768.doi: 10.13278/j.cnki.jjuese.201606113

Previous Articles     Next Articles

Geochronology and Geochemistry in Pluton I in Baogutu Area, West Junggar

Yin Jiyuan1,2, Chen Wen1, Xiao Wenjiao2, Luo Yong3, Zhang Bin1, Yang Li1, Yu Shun1, Xu Cui4   

  1. 1. Laboratory of Isotope Thermochronology, Institute of Geology, Chinese Academy of Geological Sciences/State Key Laboratory of Continental Tectonics and Dynamics, Beijing 100037, China;
    2. State Key Laboratory of Lithospheric Evolution/Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    3. Nanyang City Key Laboratory of Dushan Jade, Nanyang Normal University, Nanyang 473061, Henan China;
    4. Regional Geology and Mineral Resources Survey of Hebei Province, Langfang, 065000, Hebei, China
  • Received:2016-03-25 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by the Major Basic Research Project of the Ministry of Science and Technology of China (2014CB448000), the China Geological Survey (DD20160123-02), the Outlay Research Fund of Institute of Geology, Chinese Academy of Geological Sciences (J1517) and the Rresearch Grant of State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (SKLIG-KF-13-05)

Abstract: Some small-size dioritic plutons widely occur in the Baotutu area, west Junggar. The petrology, geochronology and geochemistry of thse plutons had been researched, while their petrogenesis and tectonic setting still existed controversy, which restricts the knowledge of the tectonic evolution and mineralization. To reveal the petrogenesis and tectonic setting of Baogutu dioritic plutons during Late Caberniferious, on basis of previous researches, this paper chooses pluton I in the Baogutu area as research subjects. The LA-ICP-MS zircon U-Pb for dioritic pluton I yield 206Pb/238U age of(313.8±1.1)Ma. The dioritic pluton is characterized by relatively high SiO2 (58.0%-59.0%), Al2O3 (16.6%-17.4%), Sr ((757-882)×10-6), and low Y ((14.6-15.7)×10-6) and Yb ((1.51-1.60)×10-6) contents, with high Sr/Y (50-59) ratios and slight Eu anomalies, which are analogous to those of slab-derived adakites. In addition, the dioritic pluton is relatively rich in MgO (MgO=3.46%-3.77%; Mg#=52.8-53.2), Cr ((63.8-74.7)×10-6), Ni ((45.2-49.8)×10-6), with negative Nb-Ta-Ti anomalies. The dioritic pluton is generated by partial melting of a subducted oceanic slab and subsequent melt-mantle interaction. The formation of the adakitic pluton in the Baogutu area was probably associated with the ridge subduction during Late Carboniferous period.

Key words: west Junggar, pluton I of Baogutu area, Adakite, ridge subduction, geochemistry

CLC Number: 

  • P588.122
[1] Defant M J,Drummond M S. Derivation of Some Mo-dern Arc Magmas by Melting of Young Subducted Lithosphere[J]. Nature, 1990, 347: 662-665.
[2] Aguillon-Robles A, Calmus T, Benoit M, et al. Late Miocene Adakites and Nb-Enriched Basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise Subduction Below Southern Baja California ?[J]. Geology, 2001, 29: 531-534.
[3] Sajona F G, Maury R, Bellon H, et al. High Field St-rength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines)[J]. Journal of Petrology, 1996, 37: 693-726.
[4] Sajona F G, Maury R C, Bellon H, et al. Initiation of Subduction and the Generation of Slab Melts in Western and Eastern Mindanao, Philippines[J]. Geology, 1993, 21:1007-1010.
[5] Gao S, Rudnick R L, Yuan H L, et al. Recycling Lo-wer Continental Crust in the North China Craton[J]. Nature, 2004, 432: 892-897.
[6] Wang Q, Wyman D A, Xu J F, et al. Early Creta-ceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2609-2636.
[7] Wang Q, Wyman D A, Xu J F, et al. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization[J]. The Journal of Geology, 2007, 115: 149-161.
[8] Wang Q, Wyman D A, Xu J F, et al. Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Tibet: Evidence from Central-Western Qiangtang High-K Calc-Alkaline Andesites, Dacites and Rhyolites[J]. Earth and Planetary Science Letters, 2008, 272: 158-171.
[9] Castillo P R, Janney P E, Solidum R. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights into the Source of Adakite and Other Lavas in a Complex Arc Tectonic Setting[J]. Contributions to Mineralogy and Petrology, 1999, 134: 33-51.
[10] Macpherson C G, Dreher S T, Thirlwall M F. Adaki-tes Without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 2006, 243:581-593.
[11] Buslov M M, Fujiwara Y, Iwata K, et al. Late Pa-leozoic-Early Mesozoic Geodynamics of Central Asia[J]. Gondwana Research, 2004, 7: 791-808.
[12] Jahn B M, Capdevila R, Liu D, et al. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth[J]. Journal of Asian Earth Sciences, 2004, 23: 629-653.
[13] Xiao W J, Santosh M. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth[J]. Gondwana Research, 2014, 25: 1429-1444.
[14] Xiao W J, Han C M, Yuan C, et al. Middle Cam-brian to Permian Subduction-Related Accretionary Orogenesis of North Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102-117.
[15] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic Models for Accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 31-47.
[16] 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ):后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5): 1077-1086. Han Baofu, Ji Jianqing, Song Biao, et al. Late Paleozoic Vertical Growth of Continental Crust Around the Junggar Basin, Xinjiang, China (Part I): Timing of Postcollisional Plutonism[J]. Acta Petrologica Sinica, 2006, 22(5): 1077-1086.
[17] 苏玉平, 唐红峰, 侯广顺, 等. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J]. 地球化学, 2006, 35(1): 55-67. Su Yuping, Tang Hongfeng, Hou Guangshun, et al. Geochemistry of Aluminous A-Type Granites Along Darabut Tectonic Belt in West Junggar, Xinjiang[J]. Geochemica, 2006, 35(1): 55-67.
[18] 尹继元,陈文,袁超, 等. 新疆西准噶尔晚古生代侵入岩的年龄和构造意义:来自锆石LA-ICP-MS定年的证据[J]. 地球化学, 2013, 42(5): 415-430. Yin Jiyuan, Chen Wen, Yuan Chao, et al. Ages and Tectonic Implication of Late Paleozoic Plutons in the West Junggar, North Xinjiang: Evidence from LA-ICPMS Zircon Geochronology[J]. Geochimica, 2013, 42(5): 415-430.
[19] Chen B,Arakawa Y. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Fold-Belt (NW China), with Implications for Phanerozoic Continental Growth[J]. Geochimica et Cosmochimica Acta, 2005, 69: 1307-1320.
[20] Chen B,Jahn B M. Genesis of Post-Collisional Gran-itoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence[J]. Journal of Asian Earth Sciences, 2004, 23: 691-703.
[21] Chen J F, Han B F, Ji J Q, et al. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115: 137-152.
[22] 张连昌, 万博, 焦学军, 等. 西准包古图含铜斑岩的埃达克岩特征及其地质意义[J].中国地质, 2006, 33(3): 626-631. Zhang Lianchang, Wan Bo, Jiao Xuejun, et al. Characteristics and Geological Significance of Adakitic Rocks in Copper-Bearing Porphyry in Baogutu, Western Junggar[J]. Geology in China, 2006, 33(3): 626-631.
[23] Geng H Y, Sun M, Yuan C, et al. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction?[J].Chemical Geology, 2009, 266(3/4): 373-398.
[24] Tang G J, Wang Q, Wyman D A, et al. Ridge Sub-duction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China)[J]. Chemical Geology, 2010, 277: 281-300.
[25] Yin J Y, Long X P, Yuan C, et al. A Late Carbo-niferous Slab Window: Geochronological and Geochemical Evidence from Mafic to Intermediate Dykes in West Junggar, NW China[J]. Lithos, 2013(175/176): 146-162.
[26] Yin J Y, Yuan C, Sun M, et al. Late Carboniferous High-Mg Dioritic Dykes in Western Junggar, NW China: Geochemical Features, Petrogenesis and Tectonic Implications[J]. Gondwana Research, 2010, 17: 145-152.
[27] Yang G X, Li Y J, Gu P Y, et al. Geochronological and Geochemical Study of the Darbut Ophiolitic Complex in the West Junggar (NW China): Implications for Petrogenesis and Tectonic Evolution[J]. Gondwana Research, 2012, 21: 1037-1049.
[28] Yang G X, Li Y J, Santosh M, et al. Geochronology and Geochemistry of Basaltic Rocks from the Sartuohai Ophiolitic Mélange, NW China: Implications for a Devonian Mantle Plume Within the Junggar Ocean[J]. Journal of Asian Earth Sciences, 2012, 59: 141-155.
[29] Yang G X, Li Y J, Yan J, et al. Geochronological and Geochemical Constraints on the Origin of the 304±5 Ma Karamay A-Type Granites from West Junggar, Northwest China: Implications for Understanding the Central Asian Orogenic Belt[J]. International Geology Review, 2014, 56: 393-407.
[30] Liu Y L, Guo L S, Liu Y D. Geochronology of Bao-gutu Porphyry Copper Deposit in Western Junggar Area, Xinjiang of China[J]. Science in China:Series D:Earth Science, 2009, 52(10): 1543-1549.
[31] 宋会侠, 刘玉琳, 屈文俊, 等. 新疆包古图斑岩铜矿矿床地质特征[J]. 岩石学报, 2007, 23(8): 1981-1988. Song Huixia, Liu Yulin, Qu Wenjun, et al. Geological Characters of Baogutu Porphyry Copper Deposit in Xinjiang, NW China[J]. Acta Petrologica Sinica, 2007, 23(8): 1981-1988.
[32] Shen P, Shen Y C, Pan H D, et al. Geochronology and Isotope Geochemistry of the Baogutu Porphyry Copper Deposit in the West Junggar Region, Xinjiang, China[J]. Journal of Asian Earth Sciences, 2012, 49(30): 99-115.
[33] 魏少妮, 朱永峰. 新疆西准噶尔包古图地区中酸性侵入体的岩石学、年代学和地球化学研究[J]. 岩石学报, 2015, 31(1): 143-160. Wei Shaoni, Zhu Yongfeng. Petrology, Geochronology and Geochemistry of Intermediate-Acidic Intrusions in Baogutu Area, West Junggar, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(1): 143-160.
[34] Shen P, Shen Y C, Liu T B, et al. Geochemical Signature of Porphyries in the Baogutu Porphyry Copper Belt, Western Junggar, NW China[J]. Gondwana Research, 2009,16(2): 227-242.
[35] 何国琦, 刘建波, 张越迁, 等. 准噶尔盆地西缘克拉玛依早古生代蛇绿混杂岩带的厘定[J]. 岩石学报, 2007, 23(7): 1573-1576. He Guoqi, Liu Jianbo, Zhang Yueqian, et al. Keramay Ophiolitic Mélange Formed During Early Paleozoic in West Junggar Basin[J]. Acta Petrologica Sinica, 2007, 23: 1573-1576.
[36] 肖序常, 汤耀庆, 冯益民. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992:1-171. Xiao Xuchang, Tang Yaoqing, Feng Yimin. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions[M]. Beijing:Geological Publishing House, 1992:1-171.
[37] Zhang C, Zhai M G, Allen M B,et al. Implications of Palaeozoic Ophiolites from West Junggar, NW China, for the Tectonics of Central Asia[J]. Journal of the Geological Society of London, 1993, 150: 551-561.
[38] Kwon S T, Tilton G R, Coleman R G, et al. Isotopic Studies Bearing on the Tectonics of the West Junggar Region, Xinjiang, China[J]. Tectonics, 1989, 8(4): 719-727.
[39] 魏荣珠. 西准噶尔玛依勒山枕状熔岩地质特征及大地构造意义[J]. 新疆地质, 2010, 28(3): 229-235. Wei Rongzhu. The Mayileshang Pillow Lavas (Western Junggar, Xinjiang) and Their Tectonic Implications: Constraints from the Geological and Geochemical Characteristics and Rb-Sr Isochron Ages[J]. Xinjiang Geology, 2010, 28(3): 229-235.
[40] 辜平阳, 李永军, 张兵, 等. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 2009, 25(6): 1364-1372. Gu Pingyang, Li Yongjun, Zhang Bing, et al. LA-ICP-MS Zircon U-Pb Dating of Gabbro in the Darbut Ophiolite, West Junggar, China[J]. Acta Petrologica Silica, 2009, 25(6):1364-1372.
[41] Zhou T F, Yuan F, Fan Y, et al. Granites in the Sawuer Region of the West Junggar, Xinjiang, China: Geochronological and Geochemical Characteristics and Their Geodynamic Significance[J]. Lithos, 2008, 106: 191-206.
[42] 郭丽爽, 刘玉琳, 王政华, 等. 西准噶尔包古图地区地层火山岩锆石LA-ICP-MS U-Pb年代学研究[J]. 岩石学报, 2010, 26(2): 471-477. Guo Lishuang, Liu Yulin, Wang Zhenghua, et al. The Zircon U-Pb LA-ICP-MS Geochronology of Volcanic Rocks in Baogutu Areas, Western Junggar[J]. Acta Petrologica Sinica, 2010, 26(2): 471-477.
[43] 安芳, 朱永峰. 新疆西准噶尔包古图组凝灰岩锆石SHRIMP年龄及其地质意义[J]. 岩石学报, 2009, 25(6): 1437-1445. An Fang, Zhu Yongfeng. SHRIMP U-Pb Zircon Ages of Tuff in Baogutu Formation and Their Geological Significances[J]. Acta Petrologica Sinica, 2009, 25(6): 1437-1445.
[44] 王福同.新疆维吾尔自治区古地理及地质生态图集[M].北京:中国地图出版社, 2006. Wang Futong. The Paleogeographic and Geoecological Atlas of Xinjiang Uygur Autonomous Region[M]. Beijing:Sinomaps Press, 2006.
[45] 申萍, 沈远超, 潘成泽. 新疆哈图-包古图金铜矿集区锆石年龄及成矿特点[J]. 岩石学报, 2010, 26(10): 2875-2893. Shen Ping, Shen Yuanchao, Pan Chengze. Zircon Age and Metallogenic Characteristics of the Hatu-Baogutu Au-Cu Metallogenic Concentric Region in Xinjiang[J]. Acta Petrologica Sinica, 2010, 26(10): 2875-2893.
[46] 唐功建, 王强, 赵振华, 等. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义[J]. 地球科学:中国地质大学学报, 2009, 34(1): 56-74. Tang Gongjian, Wang Qiang, Zhao Zhenhua, et al. Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area (Western Junggar): Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization[J]. Earth Science:Journal of China University of Geosciences, 2009, 34(1): 56-74.
[47] 魏少妮,程军峰,喻达兵, 等. 新疆包古图Ⅲ 号岩体岩石学和锆石SHRIMP年代学研究[J]. 地学前缘, 2011, 18(2): 212-222. Wei Shaoni, Cheng Junfeng, Yu Dabing, et al. Petrology and SHRIMP Zircon Ages of Intrusive Body Ⅲ in Baogutu Area, Xinjiang[J]. Earth Science Frontiers, 2011, 18(2): 212-222.
[48] 尹继元,陈文,喻顺, 等. 西准噶尔包古图富镁闪长质岩墙的时代,地球化学特征以及铜金成矿意义[J]. 中国地质, 2013, 40(4): 1030-1043. Yin Jiyuan, Chen Wen, Yu Shun, et al. Age, Geochemical Features and Implications for Cu-Au Mineralization of the Magnesian Dioritic Dykes Baogutu Region of West Junggar[J]. Geology in China, 2013, 40(4): 1030-1043.
[49] An F, Zhu Y. Native Antimony in the Baogutu Gold Deposit (West Junggar, NW China): Its Occurrence and Origin[J]. Ore Geology Reviews, 2010,37(3): 214-223.
[50] Xia X P, Sun M, Zhao G C, et al. Spot Zircon U-Pb Isotope Analysis by ICP-MS Coupled with a Frequency Quintupled (213 nm) Nd-YAG Laser System[J]. Geochemical Journal, 2004, 38: 191-200.
[51] Yuan C, Sun M, Wilde S, et al. Post-Collisional Plu-tons in the Balikun Area, East Chinese Tianshan: Evolving Magmatism in Response to Extension and Slab Break-off[J]. Lithos, 2010, 119: 269-288.
[52] Li X H, Li Z X, Zhou H W, et al. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia[J]. Precambrian Research, 2002, 113: 135-154.
[53] Gill T B. Orogenic Andesite and Plate Tectonics[M]. Berlin:Springer-Verlag, 1981:390.
[54] Sun S S,McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalt: Implications for Mantle Compositions and Processes[J]. Geological Society London Special Publications, 1989, 42: 313-345.
[55] Defant M J,Drummond M S, Mount St. Helens: Po-tential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc[J]. Geology, 1993, 21: 541-550.
[56] Wang Q, Xu J F, Jian P, et al. Petrogenesis of Ada-kitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144.
[57] Martin H, Smithies R H, Rapp R, et al. An Over-view of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and some Implications for Crustal Evolution[J]. Lithos, 2005, 79: 1-24.
[58] Kay R W. Aleutian Magnesian Andesites: Melts from Subducted Pacific Ocean Crust[J]. Journal of Volcanology and Geothermal Research, 1978, 4: 117-132.
[59] Chung S L, Liu D Y, Ji J Q, et al. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet[J]. Geology, 2003, 31: 1021-1024.
[60] Gao R, Xiao L, Franco P, et al. Carboniferous-Per-mian Extensive Magmatism in the West Junggar, Xinjiang, Northwestern China: Its Geochemistry, Geochronology, and Petrogenesis[J]. Lithos, 2014, 204: 125-143.
[61] 田陟贤, 李永军, 田猛, 等. 西准噶尔恰达地区哈尔加乌组火山岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(1): 135-145. Tian Zhixian, Li Yongjun, Tian Meng, et al. Zircon U-Pb Geochronogy, Geochemical Characteristics and Geological Significance of Volcanic Rocks of Haerjiawu Formation in Qiada, West Junggar[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1): 135-145.
[62] 周鼎武, 张成立,刘颖宇. 大陆造山带基底岩块中的基性岩墙群研究:以南秦岭武当地块为例[J]. 地球科学进展, 1998, 13(2): 151-156. Zhou Dingwu, Zhang Chengli, Liu Yingyu. Study on Basic Dyke Swarms Developed in the Basement in the Continental Orogeny: An Example from Wudang Block in Southern Qinling[J]. Advance in Earth Sciences, 1998, 13(2): 151-156.
[63] Zhang C L, Zou H B. Comparison Between the Per-mian Mafic Dykes in Tarim and the Western Part of Central Asian Orogenic Belt (CAOB), NW China: Implications for Two Mantle Domains of the Permian Tarim Large Igneous Province[J]. Lithos, 2013, 174: 15-27.
[64] Wang B, Chen Y, Zhang S, et al. Primary Carboni-ferous and Permian Paleomagnetic Results from the Yili Block (NW China) and Their Implications on the Geodynamic Evolution of Chinese Tianshan Belt[J]. Earth and Planetary Science Letters, 2007, 263: 288-308.
[65] Xiong X L. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite[J]. Geology, 2006, 34: 945-948.
[66] Schmidta M W, Polib S. Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation[J]. Earth and Planetary Science Letters, 1998, 163: 361-379.
[67] Tatsumi Y. Making Continental Crust: The Sanuki-toid Connection[J]. Chinese Science Bulletin, 2008,53(11): 1620-1633.
[68] 尹继元, 袁超, 孙敏, 等. 新疆哈图早二叠世富镁闪长岩的Ar-Ar年代学,地球化学特征,及其与铜金矿化的关系[J]. 岩石学报, 2012, 28(7): 2171-2184. Yin Jiyuan, Yuan Chao, Sun Min, et al. Age, Geochemical Features and Possible Petrogenesis Mechanism of Early Permian Magnesian Diorite in Hatu, Xinjiang[J]. Acta Petrologica Sinica, 2012, 28(7): 2171-2184.
[69] Cole R B, Stewart B W. Continental Margin Volca-nism at Sites of Spreading Ridge Subduction: Examples from Southern Alaska and Western California[J]. Tectonophysics, 2009, 464(1/2/3/4): 118-136.
[70] Thorkelson D J. Subduction of Diverging Plates and the Principles of Slab Window Formation[J]. Tectonophysics, 1996, 255: 47-63.
[71] Kay S M, Ramos V A, Marquez M. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America[J]. Journal of Geology, 1993, 101: 703-714.
[72] Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical Evidence for the Melting of Subducting Oceanic Lithosphere at Plate Edges[J]. Nature, 2001, 409: 500-504.
[73] Viruete J E, Contreras F, Stein G, et al. Magmatic Relationships and Ages Between Adakites, Magnesian Andesites and Nb-Enriched Basalt-Andesites from Hispaniola: Record of a Major Change in the Caribbean Island Arc Magma Sources[J]. Lithos, 2007, 99: 151-177.
[74] Sun W D, Bennett V C, Eggins S M, et al. Rhenium Systematics in Submarine MORB and Back-Arc Basin Glasses: Laser Ablation ICP-MS Results[J]. Chemical Geology, 2003, 196: 259-281.
[75] Hofmann A W. Chemcial Differentiation of the Ear-th: The Relationship Between Mantle, Oceanic Crust and Continental Crust[J]. Earth and Planetary Science Letters, 1988, 90: 297-314.
[76] McDonough W F, Sun S S. The Composition of the Earth[J]. Chemical Geology, 1995, 120: 223-253.
[77] Rudnick R L, Gao S. Composition of the Continental Crust[C]//Heinrich D H, Turekian K K. Treatise on Geochemistry. Oxford: Pergamon, 2003: 1-64.
[78] Sun W D, Ling M X, Chung S L, et al. The Genetic Association of Adakites and Cu-Au Ore Deposits[J]. International Geology Review, 2011, 53(5/6): 691-703.
[1] Zhang Qiang, Ding Qingfeng, Song Kai, Cheng Long. Detrital Zircon U-Pb Geochronology and Hf Isotope of Phyllite of Langyashan Formation in Hongshuihe Iron Ore District of Eastern Kunlun and Their Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1085-1104.
[2] Guo Chuntao, Li Ruyi, Chen Shumin. Rare Earth Element Geochemistry and Genetic Model of Dolomite of Yingshan Formation in Gucheng Area, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1121-1134.
[3] Cui Yachuan, Yu Jiejiang, Yang Wanzhi, Zhang Yuanhou, Cui Ce, Yu Jielu. Geochronology, Geochemistry and Petrogenesis of Hornblende Gabbro in Huangshan Area of Jueluotage Belt, Eastern Tianshan [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1105-1120.
[4] Zhao Xilin, Jiang Yang, Xing Guangfu, Yu Shengyao, Peng Yinbiao, Huang Wencheng, Wang Cunzhi, Jin Guodong. Chencai Early Paleozoic Subduction-Accretionary and Their Restrictions on Collage Between Cathaysia and Yangtze Block [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1135-1153.
[5] Wang Chaoyang, Meng En, Li Zhuang, Li Yanguang, Jin Mengqi. Age, Petrogenesis and Their Constraints on Regional Crustal Evolution of Late Neoarchean Gneisses in Southeast Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 587-625.
[6] Qi Tianjiao, Xue Chunji, Xu Bixia. Zircon U-Pb Age and Geochemical Characteristics of Granites from Buheta Cu(Au) Mineralization District in Zhaosu County, Xinjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 132-144.
[7] Sun Fanting, Liu Chen, Qiu Dianming, Lu Qian, He Yunpeng, Zhang Mingjie. Petrogenesis and Geodynamic Significance of Intermediate-Basic Intrusive Rocks in Xiaokuile River, Eastern Slope of the Great Xing'an Range: Evidences of Zircon U-Pb Geochronology, Elements and Hf Isotope Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 145-164.
[8] Zhang Chao, Cui Fanghua, Zhang Zhaolu, Geng Rui, Song Mingchun. Petrogenesis of Ore-Bearing Dioritic Pluton in Jinling Area in Western Shandong:Evidence from Zircon U-Pb Chronology and Petro-Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1732-1745.
[9] Shi Ke, Zhang Dayu, Ding Ning, Wang Deen, Chen Xuefeng. Geochronology, Geochemistry and Formation of Xiaoyao Rock in Southern Anhui Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1746-1762.
[10] Wang Shijie, Xu Zhongyuan, Dong Xiaojie, Du Yang, Cui Weilong, Wang Yang. Permian Tectonic Evolution of the Middle Section of Northern Margin of the North China Plate:Constraints from Zircon U-Pb Geochronology and Geochemistry of the Volcanic Rocks [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1442-1457.
[11] Xu Zhongjie, Lan Yizhi, Cheng Rihui, Li Shuanglin. Carbonate Geochemical Record of Sea-Level Change of Lunshan Formation in Lower Ordovician in Jurong Area [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1458-1470.
[12] Zhao Yuandong, Che Jiying, Wu Datian, Xu Fengming, Zhao Jun, Li Shichao. Early-Middle Jurassic TTG Granites in Northwest of Lesser Xing'an Range: Its Geochronology, Geochemical Characteristics and Tectonic Significance [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1119-1137.
[13] Liu Chen, Sun Jinggui, Qiu Dianming, Gu Alei, Han Jilong, Sun Fanting, Yang Mei, Feng Yangyang. Genesis and Geological Significance of Mesozoic Volcanic Rocks in Xiaomoerke, Northern Slope of Greater Khingan Range: Hf Isotopic Geochemistry and Zircon U-Pb Chronology [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1138-1158.
[14] Xi Aihua, Wang Mingzhi, Ge Yuhui, Li Bile, Wang Quan, Zhu Qian. Geochemistry and Geological Significance of Granite Porphyry in Wudaoling, Heilongjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1159-1171.
[15] Liu Dawei, Wang Minghan, Liu Suqiao, Hu Ke. Geochemical Characteristics and Genesis of Band Iron Formation in No.2 Mining Area of Gongchangling Iron Deposit, Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 694-705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!