Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (6): 1875-1884.doi: 10.13278/j.cnki.jjuese.201706304

Previous Articles     Next Articles

A Perfectly Matched Layer Absorbing Boundary Condition Under the Curvilinear Coordinate System

Liu Zhiqiang, Sun Jianguo, Sun Hui, Liu Mingchen, Gao Zhenghui, Shi Xiulin   

  1. GeoExploration of Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-03-02 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41274120, 41404085, 41504084)

Abstract: An absorbing boundary condition is needed to absorb the artificial boundary reflections in a numerical simulation of seismic wave. We presented a perfectly matched layer (PML) absorbing boundary condition for a second-order elastic wave equation in a curvilinear coordinate system. Similar to the PML in a Cartesian coordinate system, the PML absorbing boundary condition in a curvilinear coordinate system was formulated in frequency domain, which was obtained by the corresponding complex coordinate transformation. To transform the condition into time domain will result in complex convolutions in the perfectly matched layer. To avoid these convolutions, we introduced 4 intermediate variables. Furthermore, to simplify the free boundary condition, we adopted the orthogonal body-fitted grid for mesh generation of a rugged topography model. The numerical results show that the proposed method can absorb artificial boundary reflections effectively.

Key words: artificial boundary reflection, PML absorbing boundary, orthogonal body fitted grid

CLC Number: 

  • P631.4
[1] Clayton R,Engquist B. Absorbing Boundary Conditi-ons for Acoustic and Elastic Wave Equations[J]. Bulletin of the Seismological Society of America, 1977, 67(6):1529-1540.
[2] Cerjan C, Kosloff D, Kosloff R, et al.A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations[J]. Geophysics, 1985, 50(4):705-708.
[3] Berenger J P.A Perfectly Matched Layer for the Ab-sorption of Electromagnetic Waves[J]. Journal of Computational Physics, 1994, 114(2):185-200.
[4] Hastings F D, Schneider J B,Broschat S L. Appli-cation of the Perfectly Matched Layer (PML) Absorbing Boundary Condition to Elastic Wave Propagation[J]. The Journal of the Acoustical Society of America, 1996, 100(5):3061-3069.
[5] Collino F, Tsogka C. Application of the Perfectly Ma-tched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2001, 66(1):294-307.
[6] Zeng Y Q, He J Q, Liu Q H.The Application of the Perfectly Matched Layer in Numerical Modeling of Wave Propagation in Poroelastic Media[J]. Geophysics, 2001, 66(4):1258-1266.
[7] Jih R S, McLaughlin K L, Der Z A. Free-Boundary Conditions of Arbitrary Polygonal Topography in a Two-Dimensional Explicit Elastic Finite-Difference Scheme[J]. Geophysics, 1988, 53(8):1045-1055.
[8] Ilan A. Finite-Difference Modeling for P-Pulse Propa-gation in Elastic Media With Arbitrary Polygonal Surface[J]. Journal of Geophysics, 1977, 43(1/2):41-58.
[9] Opršal I, Zahradnik J. Elastic Finite-Difference Me-thod for Irregular Grids[J]. Geophysics, 1999, 64(1):240-250.
[10] Frankel A, Leith W. Evaluationof Topographic Eff-ects on P and S-Waves of Explosions at the Northern Novaya Zemlya Test Site Using 3-D Numerical Simulations[J]. Geophysical Research Letters, 1992, 19(18):1887-1890.
[11] Hestholm S, Ruud B. 2D Finite-Difference Elastic Wave Modelling Including Surface Topography[J]. Geophysical Prospecting, 1994, 42(5):371-390.
[12] Hestholm S, Ruud B. 3-D Finite-Difference Elastic Wave Modeling Including Surface Topography[J]. Geophysics, 1998, 63(2):613-622.
[13] Tessmer E, Kosloff D, Behle A. Elastic Wave Propa-gation Simulation in the Presence of Surface Topography[J]. Geophysical Journal International, 1992, 108(2):621-632.
[14] 李庆洋,李振春,黄建平,等. 基于贴体全交错网格的起伏地表正演模拟影响因素[J]. 吉林大学学报(地球科学版),2016,46(3):920-929. Li Qingyang, Li Zhenchun, Huang Jianping, et al. Factor Analysis of Seismic Modeling with Topography Based on a Fully Staggered Body-Fitted Grids[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3):920-929.
[15] Appelö D, Petersson N A. A Stable Finite Difference Method for the Elastic Wave Equation on Complex Geometries with Free Surfaces[J]. Communications in Computational Physics, 2009, 5(1):84-107.
[16] Lan H, Zhang Z. Three-Dimensional Wave-Field Si-mulation in Heterogeneous Transversely Isotropic Medium with Irregular Free Surface[J]. Bulletin of the Seismological Society of America, 2011, 101(3):1354-1370.
[17] Festa G, Vilotte J P. The Newmark Scheme as Ve-locity-Stress Time-Staggering:An Efficient PML Implementation for Spectral Element Simulations of Elastodynamics[J]. Geophysical Journal International, 2005, 161(3):789-812.
[18] Gao H, Zhang J. Implementationof Perfectly Matched Layers in an Arbitrary Geometrical Boundary for Elastic Wave Modelling[J]. Geophysical Journal International, 2008, 174(3):1029-1036.
[19] 孙建国,蒋丽丽. 用于起伏地表条件下地球物理场数值模拟的正交曲网格生成技术[J]. 石油地球物理勘探, 2009,44(4):494-500. Sun Jianguo,Jiang Lili. Orthogonal Curvilinear Grid Generation Technique Used for Numeric Simulation of Geophysical Fields in Undulating Surface Condition[J]. Oil Geophysical Prospecting, 2009, 44(4):494-500.
[20] Hvid S L. Three Dimensional Algebraic Grid Gene-ration[M]. Kongens Lyngby:Technical University of Denmark, 1995.
[21] Fornberg B. Generation of Finite Difference Formulas on Arbitrarily Spaced Grids[J]. Mathematics of Computation, 1988, 51(184):699-706.
[22] Lan H Q, Zhang Z J. Seismic Wavefield Modeling in Media with Fluid-Filled Fractures and Surface Topography[J]. Applied Geophysics, 2012, 9(3):301-312.
[23] Collino F, Tsogka C. Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2001, 66(1):294-307.
[24] Collino F, Monk P. The Perfectly Matched Layer in Curvilinear Coordinates[J]. SIAM Journal on Scientific Computing, 1998, 19(6):2061-2090.
[25] 丘磊,田钢,石战结, 等. 起伏地表条件下有限差分地震波数值模拟:基于广义正交曲线坐标系[J]. 浙江大学学报(工学版), 2012,46(10):1923-1931. Qiu Lei,Tian Gang,Shi Zhanjie, et al. Finite-Difference Method for Seismic Wave Numerical Simulation in Presence of Topography[J]. Journal of Zhejiang University (Engineering Scinice), 2012,46(10):1923-1931.
[1] Ye Yunfei, Sun Jianguo, Zhang Yiming, Xiong Kai. Construction of Low-Frequency Model with Three-Dimensional Tomographic Velocity Inversion and Application in Deep-Water Bock W of South China Sea [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1253-1259.
[2] Liu Yi, Liu Cai, Liu Yang, Gou Fuyan, Li Bingxiu. Adaptive Streaming Prediction Interpolation for Complex Seismic Wavefield [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1260-1267.
[3] Deng Xinhui, Liu Cai, Guo Zhiqi, Liu Xiwu, Liu Yuwei. Full Wave Field Seismic Response Simulation and Analysis of Anisotropic Shale Reservoir in Luojia Area of Jiyang Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1231-1243.
[4] Zhang Bing, Guo Zhiqi, Xu Cong, Liu Cai, Liu Xiwu, Liu Yuwei. Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1244-1252.
[5] Liu Mingchen, Sun Jianguo, Han Fuxing, Sun Zhangqing, Sun Hui, Liu Zhiqiang. Estimates of Seismic Reflector Dip by Adaptive Weighted Generalized Inverse Vector Direction Filter [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 881-889.
[6] Hu Ning, Liu Cai. Fractional Temporal Derivative Computation Method for Numerical Simulation of Wavefield in Viscous Fluid-Saturated Viscous Two-Phase VTI Medium [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 900-908.
[7] Zhou Jinju, Wang Deli, Li Bowen, Li Qiang, Wang Rui. Application of Wavefield Decomposition Based on Decoupled Propagation in Elastic RTM for VTI Media [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 909-921.
[8] Sun Jianguo, Miao He. Computation of Three Dimensional Multi-Reflection Rays Based on Traveltimes Numerical Approximation Using Chebyshev Polynomials [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 890-899.
[9] Zheng Que, Liu Cai, Tian You. Spatial Distribution of b-Value in Haicheng Region, Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 922-933.
[10] Liu Sixin, Zhu Yinuo, Wang Xudong, Song Erqiao, He Wenbo. Progress of Engineering Seismic Refraction Interpretation Method [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 350-363.
[11] Shan Gangyi, Han Liguo, Zhang Lihua. Pre-Stack Depth Migration Based on Model Confined Kirchhoff Integration [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 379-383.
[12] Sun Jianguo, Li Yilong, Sun Zhangqing, Miao He. Computation of Seismic Traveltimes and Raypath Based on Model Parameterization [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 343-349.
[13] Ning Yaling, Xu Jiashu, Xie Tao, Zhang Guoling, Lu Jun. Analysis on Deep-Well Apparent Resistivity Measurement at Dabaishe Seismic Station [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 525-533.
[14] Xu Tairan, Lu Zhanwu, Wang Haiyan, Li Hongqiang, Li Wenhui. Upper Crustal Structure of Tibetan Niangre Ore Concentration Area Revealed by Deep Seismic Reflection Profile [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 556-565.
[15] Wang Tong, Wang Deli, Feng Fei, Cheng Hao, Wei Jingxuan, Tian Mi. Multiple Prediction with 3D Sparse Inversion and Curvelet Match [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1865-1874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!