Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (4): 1244-1252.doi: 10.13278/j.cnki.jjuese.20170285

Previous Articles     Next Articles

Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model

Zhang Bing1, Guo Zhiqi1, Xu Cong2, Liu Cai1, Liu Xiwu3,4,5, Liu Yuwei3,4,5   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Northeast Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Changchun 130021, China;
    3. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China;
    4. SinoPEC Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China;
    5. SinoPEC Petroleum Exploration and Production Research Institute, Beijing 100083, China
  • Received:2017-10-26 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41430322, 41404090), the NSFC and SinoPEC Joict key Project (U1663207) and National Key S & T Special Project of China (2017ZX05049-002)

Abstract: Organic-rich shale reservoirs usually have complex mineral compositions and pore system in a small scale. This study presents a workflow of the fracture properties and anisotropy parameter inversion of shales based on the rock physics model and improved particle swarm optimization algorithm. A two-pore system for fractured shales was built through applying the self-consistent equivalent medium theory and Chapman's multi-scale porosity model. This inversion workflow can be used to estimate multi-parameter simultaneously by utilizing the simulated annealing-based particle swarm optimization algorithm. The intelligence algorithm has the ability to find global optimization and fast convergence. The workflow was applied in the Longmaxi shale-gas reservoir in the Sichuan basin to estimate the aspect ratio of pores, fracture density, and anisotropy parameters. The result is consistent with the existing research and provides diversified information for the shale reservoir evaluation.

Key words: shale reservoir, fracture properties, anisotropy, Chapman's model, particle swarm optimization algorithm, Sichuan basin

CLC Number: 

  • P631.4
[1] 张广智,陈娇娇,陈怀震,等. 基于岩石物理模版的碳酸盐岩含气储层定量解释[J]. 吉林大学学报(地球科学版), 2015, 45(2):630-638. Zhang Guangzhi, Chen Jiaojiao, Chen Huaizhen, et al. Quantitative Interpretation of Carbonate Gas Reservoir Based on Rock Physics Template[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(2):630-638.
[2] 逄硕,刘财,郭智奇,等. 基于岩石物理模型的页岩孔隙结构反演及横波速度预测[J]. 吉林大学学报(地球科学版), 2017, 47(2):606-615. Pang Shuo, Liu Cai, Guo Zhiqi, et al. Estimation of Pore-Shape and Shear Wave Velocity Based on Rock-Physics Modelling in Shale[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):606-615.
[3] Bandyopadhyay K. Seismic Anisotropy:Geological Causes and Its Implications to Reservoir Geophysics[D]. San Francisco:Stanford University, 2009.
[4] Hornby B E, Schwartz L M, Hudson J A. Anisotropic Effective-Medium Modeling of the Elastic Properties of Shales[J]. Geophysics, 1994, 59(10):1570-1583.
[5] Sayers C M. Anisotropic Velocity Analysis[J]. Geo-physical Prospecting, 1995, 43(4):541-568.
[6] Sayers C M. Seismic Anisotropy of Shales[J]. Geo-physical Prospecting, 2005, 53(5):667-676.
[7] Kwon O, Kronenberg A K, Gangi A F, et al. Per-meability of Illite-Bearing Shale:1. Anisotropy and Effects of Clay Content and Loading[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B10):205-223.
[8] Chapman M. Frequency-Dependent Anisotropy due to Meso-Scale Fractures in the Presence of Equant Porosity[J]. Geophysical Prospecting, 2003, 51(5):369-379.
[9] Jiang M, Spikes K T. Estimation of Reservoir Pro-perties of the Haynesville Shale by Using Rock-Physics Modelling and Grid Searching[J]. Geophysical Journal International, 2013, 195:315-329.
[10] 高鹰,谢胜利. 基于模拟退火的粒子群优化算法[J]. 计算机工程与应用, 2004, 40(1):47-50. Gao Ying, Xie Shengli. Particle Swarm Optimization Algorithms Based on Simulated Annealing[J]. Computer Engineering and Applications, 2004, 40(1):47-50.
[11] Thomsen L. Weak Elastic Anisotropy[J]. Geophy-sics, 1986, 51(10):1954-1966.
[12] O'Connell R J, Budiansky B. Seismic Velocities in Dry and Saturated Cracked Solids[J]. Journal of Geophysical Research, 1974, 79(35):5412-5426.
[13] Berryman J G. Mixture Theories for Rock Properties[M]//A Handbook of Physical Constants. Washington, D C:American Geophysical Union, 1995:205-228.
[14] Dvorkin J, Nolen-Hoeksema R, Nur A. The Squirt-Flow Mechanism:Macroscopic Description[J]. Geophysics, 1994, 59(3):428-438.
[15] 兰慧田. 裂缝性孔隙介质波场模拟与频变AVO储层参数反演[D].长春:吉林大学,2014. Lan Huitian. Wave Field Modeling in Fractured Porous Media and Frequency-Dependent AVO Reservoir Parameters Inversion[D]. Changchun:Jilin University, 2014.
[16] 邓继新,王欢,周浩,等. 龙马溪组页岩微观结构、地震岩石物理特征与建模[J].地球物理学报,2015, 58(6):2123-2136. Deng Jixin, Wang Huan, Zhou Hao, et al. Microtexture, Seismic Rock Physical Properties and Modeling of Longmaxi Formation Shale[J]. Chinese Journal of Geophysics, 2015, 58(6):2123-2136.
[17] Guo Z Q, Liu C, Liu X W, et al. Research on Anisotropy of Shale Oil Reservoir Based on Rock Physics Model[J]. Applied Geophysics, 2016,13(2):382-392.
[18] Guo Z Q, Li X Y. Rock Physics Model-Based Prediction of Shear Wave Velocity in the Barnett Shale Formation[J]. Journal of Geophysics and Engineering, 2015, 12(3):527-534.
[19] 李坤,印兴耀,宗兆云. 利用平滑模型约束的频率域多尺度地震反演[J]. 石油地球物理勘探,2016, 51(4):760-780. Li Kun, Yin Xingyao, Zong Zhaoyun. Multi-Scale Seismic Inversion in Frequency Domain Based on Smoothing Model[J]. Oil Geophysical Prospecting, 2016, 51(4):760-780.
[20] Qian K, Zhang F, Chen S, et al. A Rock Physics Model for Analysis of Anisotropic Parameters in a Shale Reservoir in Southwest China[J]. Journal of Geophysics and Engineering, 2016, 13(1):19-34.
[1] Deng Xinhui, Liu Cai, Guo Zhiqi, Liu Xiwu, Liu Yuwei. Full Wave Field Seismic Response Simulation and Analysis of Anisotropic Shale Reservoir in Luojia Area of Jiyang Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1231-1243.
[2] Hu Xinlei, Lü Yanfang, Sun Yonghe, Sun Tongwen. Comprehensive Quantitative Evaluation of Vertical Sealing Ability of Faults in Caprock: An Example of Ed2 Mudstone Caprock in Nanpu Sag [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 705-718.
[3] Yin Changchun, Yang Zhilong, Liu Yunhe, Zhang Bo, Qi Yanfu, Cao Xiaoyue, Qiu Changkai, Cai Jing. Characteristics of 3D DC Resistivity Response for Arbitrary Anisotropic Models Using Circular Scanning Measurement [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 872-880.
[4] Liu Zhongbao, Du Wei, Gao Bo, Hu Zongquan, Zhang Yuying, Wu Jing, Fen Dongjun. Sedimentary Model and Distribution of Organic-Rich Shale in the Sequence Stratigraphic Framework: A Case Study of Lower Cambrian in Upper Yangtze Region [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 1-14.
[5] Liu Lihong, Du Xiaodi, Xu Shouli, Wen Huaguo. Characteristics and Formation of the Cambrian Dolomite in Middle-South Sichuan Basin, China [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 775-784.
[6] Qin Linjiang, Yang Changfu. Analytic Solution to the MT Responses of a Two-Segment Model with Axially Anisotropic Conductivity Structures Overlying a Perfect Insulator [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1260-1267.
[7] Ben Fang, Liu Yunhe, Huang Wei, Xu Chi. MCSEM Responses for Anisotropic Media in Shallow Water [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 581-593.
[8] Mo Shaoxing,Long Xingjiao,Li Ying,Zheng Fei,Shi Xiaoqing,Zhang Keni,Zhao Liang. Numerical Modeling of CO2 Sequestration in the Saline Aquifer of  Yancheng Formation in Subei Basin Using TOUGHREACT-MP [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1647-1658.
[9] Zhang Zhongqing, Pang Bingqiang. A Novel Approach for Electromagnetic Logging While Drilling Data Processing [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1720-1726.
[10] Li Jiming,Zuo Sansheng. Spatial Variation of Rock Quality Designation (RQD) in Fractured Rock Masses [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 946-953.
[11] Lai Jin, Wang Guiwen, Chen Yangyang, Huang Longxing, Zhang Lili, Wang Di, Sun Yanhui, Li Mei. Diagenetic Facies and Prediction of High Quality Reservoir of Member 2 of Xujiahe Formation in Penglai Area, Central Sichuan Basin [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 432-445.
[12] YIN Jiang-ning, XIAO Ke-yan, ZOU Wei, WANG Zhong, LU Lu. Applying Geostatistics to Extract Geochemical Information in East Tianshan [J]. J4, 2012, 42(3): 887-894.
[13] ZHANG Guang-zhi, CHEN Huai-zhen, YI Xing-yao, LI Ning, YANG Bao-jun. Method of Fracture Elastic Parameter Inversion Based on Anisotropic AVO [J]. J4, 2012, 42(3): 845-851.
[14] LI Jun, ZOU Hua-yao, ZHANG Guo-chang, LI Ping-ping, FENG Chong, ZHANG Yan-zhen, CHEN Jia-song. Origins of Overpressure Tight Gas Reservoirs in the Xujiahe Formation, Northeastern Sichuan Basin [J]. J4, 2012, 42(3): 624-633.
[15] XU Sheng-lin, CHEN Hong-de, CHEN An-Qing, LIN Liang-biao, LI Jun-wen, YANG Jun-bin. Source Rock Characteristics of Marine Strata|Sichuan Basin [J]. J4, 2011, 41(2): 343-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!