Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (2): 411-419.doi: 10.13278/j.cnki.jjuese.20170061
Previous Articles Next Articles
Li Jianping, Weng Aihua, Li Shiwen, Li Dajun, Li Sirui, Yang Yue, Tang Yu, Zhang Yanhui
CLC Number:
[1] Karato S I. Remote Sensing of Hydrogen in Earth's Mantle[J]. Reviews in Mineralogy & Geochemistry, 2006, 62(1):343-375. [2] Schultz A. On the Vertical Gradient and Associated Heterogeneity in Mantle Electrical Conductivity[J]. Phys Earth Planet Int,1990, 64(1):68-86. [3] Utada H, Koyama T, Obayashi M, et al. A Joint Interpretation of Electromagnetic and Seismic Tomography Models Suggests the Mantle Transition Zone Below Europe is Dry[J]. Earth Planet Sci Lett, 2009, 281(3/4):249-257. [4] Shimizu H, Utada H, Baba K, et al. Three-Dimen-sional Imaging of Electrical Conductivity in the Mantle Transition Zone Beneath the North Pacific Ocean by a Semi-Global Induction Study[J]. Phys Earth Planet Int, 2010, 183(1/2):252-269. [5] Semenov A,Kuvshinov A. Global 3-D Imaging of Mantle Conductivity Based on Inversion of Observatory C-Responses:Ⅱ:Data Analysis and Results[J]. Geophysical Journal International,2012, 191(3):965-992. [6] Kelbert A,Schultz A,Egbert G. Global Electromag-netic Induction Constraints on Transition-Zone Water Content Variations[J]. Nature, 2009, 460:1003-1006. [7] Huang X,Xu Y,Karato S I. Water Content in the Transition Zone from Electrical Conductivity of Wadsleyite and Ringwoodite[J]. Nature, 2005, 434:746-749. [8] Yoshino T,Manthilake G,Matsuzaki T,et al. Dry Mantle Transition Zone Inferred from the Conductivity of Wadsleyite and Ringwoodite[J]. Nature, 2008, 451:326-329. [9] Sun J,Egbert G. A Thin-Sheet Model for Global Electromagnetic Induction[J]. Geophysical Journal International,2012, 189(1):343-356. [10] Schmucker U. A Spherical Harmonic Analysis of Solar Daily Variations in the Years 1964-1965:Response Estimates and Source Fields for Global Induction:I:Methods[J]. Geophysical Journal International, 1999, 136(2):439-454. [11] Koyama T, Khan A, Kuvshinov A. Three-Dimen-sional Electrical Conductivity Structure Beneath Australia from Inversion of Geomagnetic Observatory Data:Evidence for Lateral Variations in Transition-Zone Temperature, Water Content and Melt[J]. Geophysical Journal International, 2014, 196(3):1330. [12] Kuvshinov A. 3-D Global Induction in the Oceans and Solid Earth:Recent Progress in Modeling Magnetic and Electric Fields from Sources of Magnetospheric, Ionospheric and Oceanic Origin[J]. Surveys in Geophysics, 2008, 29(2):139-186. [13] Everett M E,Schultz A. Geomagnetic Induction in a Heterogeneous Sphere:Azimuthally Symmetric Test Computations and the Response of an Undulating 600-km Discontinuity[J]. J Geophys of Research Atmospheres, 1996, 101(B2):2765-2783. [14] Yoshimura R,Oshiman N. Edge-Based Finite Element Approach to the Simulation of Geoelectromagnetic Induction on a 3-D Sphere[J]. Geophys Res Lett, 2002, 29(3):1-4. [15] Ribaudo J T,Constable C G,Parker R L. Scripted Finite Element Tools for Global Electromagnetic Induction Studies[J]. Geophysical Journal International, 2012, 188(2):435-446. [16] Uyeshima M,Schultz A. Geoelectromagnetic Induc-tion in a Heterogeneous Sphere:A New Three-Dimensional Forward Solver Using a Conservative Staggered-Grid Finite Difference Method[J]. Geophysical Journal International,2000, 140(3):636-650. [17] Kelbert A, Egbert G D, Schultz A. Non-Linear Conjugate Gradient Inversion for Global EM Induction:Resolution Studies[J]. Geophysical Journal International, 2008, 173(2):365-381. [18] Weiss C J. Triangulated Finite Difference Methods for Global-Scale Electromagnetic Induction Simulations of Whole Mantle Electrical Heterogeneity[J]. Geochemistry Geophysics Geosystems,2010,11(11):129-143. [19] Tarits P, Mande A M. The Heterogeneous Electrical Conductivity Structure of the Lower Mantle[J]. Physics of the Earth & Planetary Interiors, 2010, 183(1/2):115-125. [20] Martinec Z. Spectral-Finite Element Approach to Three-Dimensional Electromagnetic Induction in a Spherical Earth[J]. Geophysical Journal International, 1999, 136(1):229-250. [21] Velímsk J, Martinec Z. Time-Domain, Spherical Harmonic-Finite Element Approach to Transient Three-Dimensional Geomagnetic Induction in a Spherical Heterogeneous Earth[J]. Geophysical Journal International, 2005, 161(1):81-101. [22] Kelbert A, Kuvshinov A, Velímsk J, et al. Global 3-D Electromagnetic Forward Modelling:A Benchmark Study[J]. Geophysical Journal Internationa,2014, 197(2):785-814. [23] 陈伯舫. 中国东南部地幔高导层的埋藏深度[J]. 地震学报, 1986,8(2):172-178. Chen Bofang. Buried Depth of the High Conductivity Layer Beneath the Region of South-East China[J]. Acta Seismologica Sinica,1986, 8(2):172-178. [24] 杜兴信, 鲁秀玲. 用单台Z/H法研究陕西地区深部电导率[J]. 内陆地震, 1994,8(4):333-338. Du Xingxin, Lu Xiuling. Investigation on Deep Electroconductivity of Shaanxi Region by Means of Z/H Method with Single Station[J]. Inland Earthquake,1994, 8(4):333-338. [25] 范国华, 姚同起, 顾左文,等. 利用磁梯度法研究我国地幔导电率[J]. 地震学报, 1997,19(2):164-173. Fan Guohua, Yao Tongqi, Gu Zuowen, et al. Research on Mantle Conductivity of China with Gradient Method[J]. Acta Seismologica Sinica, 1997, 19(2):164-173. [26] 赵国泽,汤吉,梁竞阁,等. 用大地电磁网法在长春等地探测上地幔电导率结构[J]. 地震地质,2001, 23(2):143-152. Zhao Guoze,Tang Ji,Liang Jingge,et al. Measurement of Network-MT in Two Areas of NE China for Study of Upper Mantle Conductivity Structure of the Back-Arc Region[J]. Seismology and Geology,2001, 23(2):143-152. [27] 徐光晶,汤吉,黄清华,等. 华北地区上地幔及过渡带电性结构研究[J]. 地球物理学报,2015, 58(2):566-575. Xu Guangjing,Tang Ji,Huang Qinghua,et al. Study on the Conductivity Structure of the Upper Mantle and Transition Zone Beneath North China[J]. Chinese Journal of Geophysics,2015, 58(2):566-575. [28] Rokityansky I I. Geoelectromagnetic Investigation of the Earth's Crust and Mantle[M]. Berlin:Springer-Verlag,1982. [29] 李大俊,翁爱华,杨悦,等. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5):1552-1561. Li Dajun, Weng Aihua, Yang Yue,et al. Three-Dimension Forward Modeling and Characteristics for Surface-Borehole Transient Electromagnetic by Using Staggered-Grid Finite Difference Method[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(5):1552-1561. [30] Smith J T. Conservative Modeling of 3-D Electromag-netic Fields:Part 1:Properties and Error Analysis[J]. Geophysics, 1996, 61(5):1308-1318. [31] Schultz A,Larsen J C. On the Electrical Conductivity of the Mid-Mantle:I:Calculation of Equivalent Scalar Magnetotelluric Response Functions[J]. Geophysical Journal International, 1987, 88(3):733-761. [32] Schmucker U. Substitute Conductors for Electromag-netic Response Estimates[J]. Pure and Applied Geophysics, 1987, 125(2):341-367. [33] Fujii I, Schultz A. The 3D Electromagnetic Response of the Earth to Ring Current and Auroral Oval Excitation[J]. Geophysical Journal International, 2002, 151(3):689-709. [34] Medin A E,Parker R L,Constable S. Making Sound Inferences from Geomagnetic Sounding[J]. Physics of the Earth & Planetary Interiors, 2007, 160(1):51-59. [35] 李世文,翁爱华,李建平,等. 浅部约束的地磁测深C-响应一维反演[J]. 地球物理学报, 2017,60(3):1201-1210. Li Shiwen, Weng Aihua, Li Jianping, et al. 1-D Inversion of C-Response Data from Geomagnetic Depth Sounding with Shallow Resistivity Constraint[J]. Chinese Journal of Geophysics, 201760(3):1201-1210. [36] Shimizu H, Koyama T, Baba K. Three-Dimensional Geomagnetic Response Functions for Global and Semi-Global Scale Induction Problems[J]. Geophysical Journal International, 2009, 178(1):123-144. |
[1] | Liu Mingchen, Sun Jianguo, Han Fuxing, Sun Zhangqing, Sun Hui, Liu Zhiqiang. Estimates of Seismic Reflector Dip by Adaptive Weighted Generalized Inverse Vector Direction Filter [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 881-889. |
[2] | Yang Haiyan, Yue Jianhua, Xu Zhengyu, Zhang Hua, Jiang Zhihai. Transient Electromagnetic Method Modeling in Ground-Borehole Model with Overburden Influence [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1527-1537. |
[3] | Wang Weiping, Zeng Zhaofa, Li Jing, Wu Chengping. Topographic Effects and Correction for Frequency Airborne Electromagnetic Method [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 941-951. |
[4] | Yang Qingjie, Liu Cai, Geng Meixia, Feng Xuan, Guo Zhiqi, Liu Yang. Staggered Grid Finite Difference Scheme and Coefficients Deduction of Any Number of Derivatives [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 375-385. |
[5] | ZHOU Xiao-hua, CHEN Zu-bin, ZENG Xiao-xian, JIAO Jian. Simulation of Microtremor Using Staggered-Grid Finite Difference Method [J]. J4, 2012, 42(3): 852-857. |
[6] | MENG Qing-sheng, FAN Yu-qing, ZHANG Ke, ZHANG Meng. Tube Wave Propagation Numerical Simulation Based on High Order Finite-Difference Method [J]. J4, 2011, 41(1): 292-298. |
[7] | LIU Si-xin, ZHOU Jun-feng, WU Jun-jun, ZENG Zhao-fa, WAN Hong-xiang. Numerical Simulations of Borehole Radar for Metal Ore Detection [J]. J4, 2010, 40(6): 1479-1484. |
[8] | SUN Zhang-qing, SUN Jian-guo, ZHANG Dong-liang. 2.5-D DC Electric Field Numerical Modeling Including Surface Topography Based on Coordinate Transformation Method [J]. J4, 2010, 40(2): 425-431. |
[9] | YANG Hao, SUN Jian-guo, HAN Fu-xin, MA Shu-fang. Fast Algorithm of the Expanding Wavefronts Finite-Difference Traveltime Calculation Based on the Three Branch Tree Structure Heap Sorts [J]. J4, 2010, 40(1): 188-194. |
[10] | WU Guo-chen, LUO Cai-ming,LIANG Kai. Frequency-Space Domain Finite Difference Numerical Simulation of Elastic Wave in TTI Media [J]. J4, 2007, 37(5): 1023-1033. |
[11] | LIU Si-xin, ZENG Zhao-fa, XU Bo. FDTD Simulation of Ground Penetrating Radar Signal in 3-Dimensional Dispersive Medium [J]. J4, 2006, 36(01): 123-0127. |
[12] | LIU Si-xin, ZENG Zhao-fa, XU Bo. Realization of Absorbing Boundary Condition with Lossy Media for Ground Penetrating Radar Simulation [J]. J4, 2005, 35(03): 378-0381. |
|