Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (3): 881-889.doi: 10.13278/j.cnki.jjuese.20170042

Previous Articles     Next Articles

Estimates of Seismic Reflector Dip by Adaptive Weighted Generalized Inverse Vector Direction Filter

Liu Mingchen, Sun Jianguo, Han Fuxing, Sun Zhangqing, Sun Hui, Liu Zhiqiang   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-07 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41274120,41404085,41504084)

Abstract: It's difficult to estimate a seismic reflector dip at discontinuities. Many seismic attributes such as reflector dip change fast at faults, geological boundaries and so on. To overcome this problem, we explored an adaptive weighted generalized inverse vector direction filter to smooth the gradient vector field to estimate a local seismic reflector dip. The method is as below:at first, to compute the gradient vector field by a modified finite-difference method; and then to set the reference direction to vertical downward and invert the opposite vectors to the reference direction; at last, to estimate the seismic reflector dip by the adaptive weighted generalized inverse vector direction filter. This method can estimate a seismic reflector dip robustly and efficiently with high-resolution at discontinuities, while the conventional methods may fail. Both of the synthetic and real data examples demonstrated the effectiveness and efficiency of our method for estimating seismic reflector dips with high-resolution.

Key words: seismic dip, vector filter, finite difference, gradient vector, structure protect

CLC Number: 

  • P631.4
[1] Billette F, Lambaré G. Velocity Macro-Model Estima-tion from Seismic Reflection Data by Stereotomography[J].Geophysical Journal International, 1998, 135(2):671-690.
[2] Lambaré G. Stereotomography[J]. Geophysics, 2008, 73(5):VE25-VE34.
[3] 王宇翔, 杨锴, 杨小椿, 等. 基于梯度平方结构张量算法的高密度二维立体层析反演[J]. 地球物理学报, 2016, 59(1):263-276. Wang Yuxiang, Yang Kai, Yang Xiaochun, et al. A High-Density Stereo-Tomography Method Based on the Gradient Square Structure Tensors Algorithm[J].Chinese Journal of Geophysics, 2016, 59(1):263-276.
[4] 李振伟, 杨锴, 倪瑶, 等. 基于立体层析反演的偏移速度建模应用研究[J].石油物探, 2014, 53(4):444-452. Li Zhenwei, Yang Kai, Ni Yao, et al. Migration Velocity Analysis with Stereo-Tomography Inversion[J]. Geophysical Prospecting for Petroleum, 2014, 53(4):444-452.
[5] 杜婧, 王尚旭, 刘国昌, 等. 基于局部斜率属性的VSP波场分离研究[J]. 地球物理学报, 2009, 52(7):1867-1872. Du Jing, Wang Shangxu, Liu Guochang, et al. VSP Wavefield Separation Using Local Slopes Attribute[J].Chinese Journal of Geophysics, 2009, 52(7):1867-1872.
[6] 刘洋, 王典, 刘财, 等. 局部相关加权中值滤波技术及其在叠后随机噪声衰减中的应用[J]. 地球物理学报, 2011, 54(2):358-367. Liu Yang, Wang Dian, Liu Cai, et al. Weighted Median Filter Based on Local Correlation and Its Application to Poststack Random Noise Attenuation[J]. Chinese Journal of Geophysics, 2011, 54(2):358-367.
[7] 刘洋, 王典, 刘财, 等. 基于非平稳相似性系数的构造导向滤波及断层检测方法[J]. 地球物理学报, 2014, 57(4):1177-1187. Liu Yang, Wang Dian, Liu Cai, et al. Structure-Oriented Filtering and Fault Detection Based on Nonstationary Similarity[J]. Chinese Journal of Geophysics, 2014, 57(4):1177-1187.
[8] Fomel S, Liu Y. Seislet Transform and Seislet Frame[J]. Geophysics, 2010, 75(3):V25-V38.
[9] Fomel S. Velocity-Independent Time-Domain Seismic Imaging Using Local Event Slopes[J].Geophysics, 2007, 72(3):S139-S147.
[10] Cooke D, Bóna A, Hansen B. Simultaneous Time Imaging, Velocity Estimation, and Multiple Suppression Using Local Event Slopes[J]. Geophysics, 2009, 74(6):WCA65-WCA73.
[11] 石秀林, 孙建国, 孙辉, 等. 基于波前构建法的时间域深度偏移:delta波包途径[J]. 吉林大学学报(地球科学版), 2016, 46(6):1847-1854. Shi Xiulin, Sun Jianguo, Sun Hui, et al. Depth Migration in Time Domain Using Wavefront Construction:Delta Packet Approach[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6):1847-1854.
[12] Hertweck T, Schleicher J, Mann J. Data Stacking Beyond CMP[J].The Leading Edge, 2007, 26(7):818-827.
[13] Ottolini R. Velocity Independent Seismic Imaging[R]. Palo Alto:Stanford University, 1983:59-68.
[14] Claerbout J F, Gubbins D. Earth Sounding Analysis:Processing Versus Inversion[J]. Nature, 1994, 370:190.
[15] Fomel S. Applications of Plane-Wave Destruction Filters[J]. Geophysics, 2002, 67(6):1946-1960.
[16] Fomel S. Shaping Regularization in Geophysical-Esti-mation Problems[J]. Geophysics, 2007, 72(2):R29-R36.
[17] Barnes A E. The Calculation of Instantaneous Fre-quency and Instantaneous Bandwidth[J]. Geophysics, 1992, 57(11):1520-1524.
[18] Barnes A E. Theory of 2-D Complex Seismic Trace Analysis[J]. Geophysics, 1996, 61(1):264-272.
[19] Barnes A E. Weighted Average Seismic Attributes[J]. Geophysics, 2000, 65(1):275-285.
[20] Fomel S. Local Seismic Attributes[J]. Geophysics, 2007, 72(3):A29-A33.
[21] Bakker P. Image Structure Analysis for Seismic Inter-pretation[D]. Delft:Delft University of Technology, 2002.
[22] Wang W, Gao J H, Chen W C. Robust Estimates of Seismic Reflector Orientations with Weighted Vector Directional Filter[J]. Journal of Seismic Exploration, 2011, 20(2):119-134.
[23] Wang Y E, Luo Y, Alfaraj M. Inverse-Vector App-roach for Smoothing Dips and Azimuths[J]. Geophysics, 2008, 73(6):P9.
[24] Alfaraj M, Wang Y, Luo Y. Enhanced Isotropic Gradient Operator[J]. Geophysical Prospecting, 2014, 62(3):507-517.
[25] Claerbout J F. Basic Earth Imaging:Stanford Explo-ration Project[DB/OL].[2017-02-20]. http://sepwww.stanford. edu/sep/prof/.
[1] Li Jianping, Weng Aihua, Li Shiwen, Li Dajun, Li Sirui, Yang Yue, Tang Yu, Zhang Yanhui. 3-D Forward Method for Geomagnetic Depth Sounding Based on Finite Difference Method in Spherical Coordinate [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 411-419.
[2] Yang Haiyan, Yue Jianhua, Xu Zhengyu, Zhang Hua, Jiang Zhihai. Transient Electromagnetic Method Modeling in Ground-Borehole Model with Overburden Influence [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1527-1537.
[3] Wang Weiping, Zeng Zhaofa, Li Jing, Wu Chengping. Topographic Effects and Correction for Frequency Airborne Electromagnetic Method [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 941-951.
[4] Yang Qingjie, Liu Cai, Geng Meixia, Feng Xuan, Guo Zhiqi, Liu Yang. Staggered Grid Finite Difference Scheme and Coefficients Deduction of Any Number of Derivatives [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 375-385.
[5] ZHOU Xiao-hua, CHEN Zu-bin, ZENG Xiao-xian, JIAO Jian. Simulation of Microtremor Using Staggered-Grid Finite Difference Method [J]. J4, 2012, 42(3): 852-857.
[6] MENG Qing-sheng, FAN Yu-qing, ZHANG Ke, ZHANG Meng. Tube Wave Propagation Numerical Simulation Based on High Order Finite-Difference Method [J]. J4, 2011, 41(1): 292-298.
[7] LIU Si-xin, ZHOU Jun-feng, WU Jun-jun, ZENG Zhao-fa, WAN Hong-xiang. Numerical Simulations of Borehole Radar for Metal Ore Detection [J]. J4, 2010, 40(6): 1479-1484.
[8] SUN Zhang-qing, SUN Jian-guo, ZHANG Dong-liang. 2.5-D DC Electric Field Numerical Modeling Including Surface Topography Based on Coordinate Transformation Method [J]. J4, 2010, 40(2): 425-431.
[9] YANG Hao, SUN Jian-guo, HAN Fu-xin, MA Shu-fang. Fast Algorithm of the Expanding Wavefronts Finite-Difference Traveltime Calculation Based on the Three Branch Tree Structure Heap Sorts [J]. J4, 2010, 40(1): 188-194.
[10] WU Guo-chen, LUO Cai-ming,LIANG Kai. Frequency-Space Domain Finite Difference Numerical Simulation of Elastic Wave in TTI Media [J]. J4, 2007, 37(5): 1023-1033.
[11] LIU Si-xin, ZENG Zhao-fa, XU Bo. FDTD Simulation of Ground Penetrating Radar Signal in 3-Dimensional Dispersive Medium [J]. J4, 2006, 36(01): 123-0127.
[12] LIU Si-xin, ZENG Zhao-fa, XU Bo. Realization of Absorbing Boundary Condition with Lossy Media for Ground Penetrating Radar Simulation [J]. J4, 2005, 35(03): 378-0381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!