Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (4): 1174-1181.doi: 10.13278/j.cnki.jjuese.20180034

Previous Articles     Next Articles

Effect on Temperature Field of Subgrade Cold Resistive Layer in Seasonal Frost Region

Li Changyu1, Ma Guixia1, Hao Guang2, Xu Liang1   

  1. 1. College of Civil Engineering, Changchun Institute of Technology, Changchun 130021, China;
    2. Yunnan Design Institute Group Survey Institute, Kunming 650223, China
  • Received:2018-01-24 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China(51778063)

Abstract: In order to study the temperature field effect on the cold resistance layer of road subgrade in a seasonal frozen region, based on the ANSYS software thermal analysis principle, three kinds of cold resistance layer materials (fly ash soil, fly ash soil mixed with rubber particles, and fly ash soil mixed with polypropylene fibrer) were studied through simulating a seasonal frozen soil subgrade temperature field. The biggest frozen depth of the road subgrade cold resistance layer built by fly ash soil mixed with rubber particles was 0.94 m, and its lowest temperature gradient was -23.563℃/m; The biggest frozen depth of the subgrade cold resistance layer by fly ash soil was 1.32 m,and its lowest temperature gradient was -17.606℃/m; While the biggest frozen depth of the subgrade cold resistance layer by the fly ash soil mixed with polypropylene fibrer was 1.20 m,and its lowest temperature gradient was -19.557℃/m. The cold resistance effect of the ash soil mixed with rubber particles is the best. To keep roadbed soil unfrozen, the minimum paving thickness was 0.33 m. The fly ash soil modified by rubber particle is suitable as a cold resistance material in seasonal frozen area.

Key words: temperature field, cold resistivity layer, fly ash soils, rubber particles, cold resistivity effect

CLC Number: 

  • U414.1
[1] Qin Yinghong.Theory and Procedure for Measuring the Albedo of a Roadway Embankment[J].Cold Regions Science and Technology, 2016,126:30-35.
[2] 王锐,程培峰,韩春鹏,等. 高纬度多年冻土区路基工后沉降变形[J]. 长安大学学报(自然科学版),2017,37(1):43-49,75. Wang Rui, Cheng Peifeng, Han Chunpeng, et al. Roadbed Settlement Deformation After Construction in Permafrost Regions of High Altitude[J]. Journal of Chang'an University(Natural Science Edition), 2017, 37(1):43-49, 75.
[3] Gruber S. Review Article:Inferring Permafrost and Permafrost Thaw in the Mountains of the Hindu Kush Himalaya Region[J].The Cryosphere,2017,11:88-99.
[4] Fan Yu.Crack Formation of a Highway Embankment Installed with Two-Phase Closed Thermosyphons in Permafrost Regions:Field Experiment and Geothermal Modelling[J].Applied Thermal Engineering,2017,115:670-681.
[5] Zheng Mingyan. Modeling and Mitigation of Excessive Dynamic Responses of Wind Turbines Founded in Warm Permafrost[J]. Engineering Structures,2017,148:36-46.
[6] 李金平,张娟,陈建兵,等. 高寒冻土区路基变形演化规律与破坏特征[J]. 交通运输工程学报,2016,16(4):78-87. Li Jinping, Zhang Juan, Chen Jianbing, et al. Evolution Laws and Failure Characteristics of Subgrade Deformation in Alpine Permafrost Region[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4), 78-87.
[7] Tai Bowen. Thermal Characteristics and Declining Per-mafrost Table Beneath Three Cooling Embankments in Warm Permafrost Regions[J].Applied Thermal Engineering,2017,123:435-447.
[8] Jonathan D. Review of Effectiveness and Costs of Stra-tegies to Improve Roadbed Stability in Permafrost Regions[J]. Regehr Journal of Cold Regions Engineering,2013,27(3):109-131.
[9] 盛煌,张鲁新,杨成松,等. 保温处理措施在多年冻土区道路工程中的应用[J]. 冰川冻土,2002,24(5):618-622. Sheng Huang, Zhang Luxin,Yang Chengsong, et al. Application of Thermal-Insulation Treatment to Roadway Engineering in Permafrost Regions[J].Journal of Glaciology and Geocryology, 2002,24(5):618-622.
[10] 温智,盛煌,马巍. EPS保温板在青藏铁路中应用的适用性评价数值模拟[J]. 铁道学报,2005,27(3):91-96. Wen Zhi, Sheng Huang, Ma Wei, et al. Numerical Simulation on Application of EPS in Embankment Engineering of Qinghai-Tibet Railway[J]. Jouranl of the China Railway Society, 2005, 27(3):91-96.
[11] 王曼,刘建军.道路工程中XPS保温板防冻胀厚度的研究[J]. 石河子大学学报(自然科学版), 2014,32(1):123-127. Wang Man, Liu Jianjun. Study on Anti-Frost Thickness of Insulation in Road Engineering[J]. Journal of Shihezi University (Natural Science),2014,32(1):123-127.
[12] 刘素芳,石磊,郑方园,等.聚苯乙烯泡沫塑料在建筑设计中的应用[J].塑料工业,2016,44(12):95-98. Liu Sufang, Shi Lei, Zheng Fangyuan, et al. The Application of Polystyrene Foam in Architectural Design[J]. China Plastice Industry, 2016, 44(12):95-98.
[13] 李杨,王清,王坛华,等. 冻土水热耦合模型数值求解及结果检验[J]. 吉林大学学报(地球科学版),2015, 45(1):207-213. Li Yang, Wang Qing, Wang Tanhua, et al. Numerical Solution and Test of Results for a Hydrothermal Coupled Model About Frozen Soil[J]. Journal of Jilin University (Earth Science Edition),2015, 45(1):207-213.
[14] 马勤国,赖远明,吴道勇,等. 多年冻土区高等级公路路基温度场研究[J]. 中南大学学报(自然科学版), 2016,32(7):2415-2423. Ma Qinguo, Lai Yuanming, Wu Daoyong, et al. Analysis of Temperature Field of High Grade Highway Embankment in Permafrost Regions[J]. Journal of Central South University (Science and Technology), 2016, 32(7):2415-2423.
[15] 刘海苹,丁琳,杨扬,等.路基高度对高纬度多年冻土区路基温度场的影响[J].黑龙江大学工程学报, 2017,8(1):25-29. Liu Haiping, Ding Lin, Yang Yang, et al. Influence of Subgrade Height in Subgrade Temperature Field on High Latitude Permafrost Regions[J]. Journal of Engineering of Heilongjiang University, 2017, 8(1):25-29.
[16] 邰博文,刘建坤,房建宏,等. 高温冻土区高速公路特殊结构路基地温分布特征及降温效果分析[J]. 岩石长安大学学报(自然科学版),2017,36(增刊1):3696-3704. Tai Bowen, Liu Jiankun, Fang Jianhong, et al.Analysis on Distribution Characteristics of Ground Temperature and Cooling Effect of Special-Structured Subgrade of the Expressway in Warm Permafrost Region[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Sup.1):3696-3704.
[17] 姚运生,王艳玲.我国北方逐日平均气温的气候模拟,中国农业气象,2004,25(3):5-7. Yao Yunsheng, Wang Yanling. Climate Simulation on Daily Mean Temperature in Norehern China[J]. Chinese Journal of Agrometeorology, 2004, 25(3):5-7.
[18] 程培峰,王锐,韩春鹏,等. 高纬度多年冻土区路基工后温度变化规律研究[J]. 公路工程2017,42(5):12-17,31. Cheng Peifeng, Wang Rui, Han Chunpeng, et al. Study on the Permafrost Roadbed the Temperature Change Rule After Constructed at the High Altitude[J]. Highway Engineering, 2017,42(5):12-17,31.
[1] Huang Pinghua, Han Sumin. Simulation Analysis and Deduction of Temperature Field Model in the Mine Floor Fracture Zone [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 969-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!