Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (2): 569-577.doi: 10.13278/j.cnki.jjuese.20170311
Previous Articles Next Articles
Feng Jinkai, Wang Qingbin, Huang Yan, Fan Diao
CLC Number:
[1] Moritz H.Advanced Physical Geodesy[M].London:Abacus Press,1980. [2] Tenzer R,Klees R.The Choice of the Spherical Radial Basis Functions in Local Gravity Field Modeling[J].Studia Geophysica et Geodaetica,2008,52(3):287-304. [3] Lehmann R.The Method of Free-Positioned Point Masses:Geoid Studies on the Gulf of Bothnia[J].Bulletin Géodésique,1993,67(1):31-40. [4] Bentel K,Schmidt M,Denby C R.Artifacts in Regional Gravity Representations with Spherical Radial Basis Functions[J].Journal of Geodetic Science,2013,3(3):173-187. [5] 吴怿昊,罗志才,周波阳.基于泊松小波径向基函数融合多源数据的局部重力场建模[J].地球物理学报,2016,59(3):852-864. Wu Yihao,Luo Zhicai,Zhou Boyang.The Approach of Regional Geoid Refinement Based on Combining Multi-Satellite Altimetry Observations and Heterogeneous Gravity Data Sets[J].Chinese Journal of Geophysics,2016,59(3):852-864. [6] Antunes C,Pail R,Catalāo J.Point Mass Method Applied to the Regional Gravimetric Determination of the Geoid[J].Studia Geophysica et Geodaetica,2003,47(1):495-509. [7] 吴星,张传定,赵东明.基于球面边值问题的点质量调和分析方法[J].地球物理学报,2009,52(12):2993-3000. Wu Xing,Zhang Chuanding,Zhao Dongming.Point Mass Harmonic Analysis Method Based on Spherical Boundary Value Problem[J].Chinese Journal of Geophysics,2009,52(12):2993-3000. [8] Tenzer R,Klees R.The Choice of the Spherical Radial Basis Functions in Local Gravity Field Modeling[J].Studia Geophysica et Geodaetica,2008,52(3):287-304. [9] 邹贤才,李建成.最小二乘配置方法确定局部大地水准面的研究[J].武汉大学学报(信息科学版),2004,29(3):218-222. Zou Xiancai,Li Jiancheng.A Local Geoid Determination Using Least-Squares Collocation[J].Editorial Board of Geomatics & Information Science of Wuhan University,2004,29(3):218-222. [10] 欧阳永忠,邓凯亮,黄谟涛,等.确定大地水准面的Tikhonov最小二乘配置法[J].测绘学报,2012,41(6):804-810. Ouyang Yongzhong,Deng Kailiang,Huang Motao,et al.The Tikhonov-Least Squares Collocation Method for Determining Geoid[J].Acta Geodaetica et Cartographica Sinica,2012,41(6):804-810. [11] 孙中苗.航空重力测量理论、方法及应用研究[D].郑州:信息工程大学,2004. Sun Zhongmiao.Theory,Method and Application of Airborne Gravimetry[D].Zhengzhou:Information Engineering University,2004. [12] 沈云中,许厚泽.不适定方程正则化算法的谱分解式[J].大地测量与地球动力学,2002,22(3):10-14. Shen Yunzhong,Xu Houze.Spectral Decomposition Formula of Regularization Solution for Ill-Posed Equation[J].Journal of Geodesy & Geodynamics,200222(3):10-14. [13] Golsorkhi M S.The Development and Evaluation of the Earth Gravitational Model 2008(EGM2008)[J].Journal of Geophysical Research,2012,117(B4):531-535. [14] Claessens S J,Featherstone W E,Barthelmes F.Experiences with Point-Mass Gravity Field Modelling in the Perth Region,Western Australia[J].Journal of Geophysical Research Space Physics,2001,3(2):342-348. [15] 李振海,汪海洪.重力数据网格化方法比较[J].大地测量与地球动力学,2010,30(1):140-144. Li Zhenhai,Wang Haihong.Comparison Among Methods for Gravity Data Gridding[J].Journal of Geodesy & Geodynamics,2010,30(1):140-144. [16] 范雕,李姗姗,孟书宇,等.利用重力异常反演马里亚纳海沟海底地形[J].吉林大学学报(地球科学版),2018,48(5):1481-1492. Fan Diao,Li Shanshan,Meng Shuyu,et al.Inversion of Mariana Trench Seabed Terrain Using Gravity Anomalies[J].Journal of Jilin University (Earth Science Edition),2018,48(5):1481-1492. |
[1] | Du Wei, Xu Jiashu, Wu Yangang, Hao Mengcheng. Tikhonov Regularization Iteration Method for High-Order Vertical Derivatives of Potential Field [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 394-401. |
|