Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (3): 880-892.doi: 10.13278/j.cnki.jjuese.20180092

Previous Articles     Next Articles

Prediction Model of Multiple Information Dry-Hot Rock in Dushancheng Area

Wu Yunxia1,2, Lü Fengjun2, Xing Lixin1, Liu Xinxing2   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. College of Resources, Hebei GEO University, Shijiazhuang 050031, China
  • Received:2018-05-03 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China(41702352), Project of Hebei Social Science Fund (HB17GL014, HB15SH057) and PHD Research Startup Foundation of Hebei Geo University (BQ2018014)

Abstract: To determine the target area of dry-hot rock exploration, based on the analysis of the characteristics of twelve kinds of geological data, the exploration of dry-hot rock resources was carried out in the middle south section of the Shanghuangqi -Wulonggou fault magmatic tectonic belt in Dushancheng area using remote sensing technology, supplemented by aeromagnetic, drilling and hydrographic exploration technology. A multiple information dry-hot rock prediction model was set up. The Mesozoic magma activity is strong in this area. Through remote sensing interpretation of strata, rock mass, ring structure, and linear structure, it is inferred that there are concealed rock masses in the study area, and the size of rock mass is controlled by compressive tectonic stress. The aeromagnetic negative anomaly confirmed the concealed rock mass, and the largest rock mass is close to 460 km2. Hot spring, geothermal field, the 107.1 times air helium concentration,and the aeromagnetic negative anomalies all support the existence of underground heat and high radioactivity sources. The mean geothermal gradient is estimated to be 3.87℃/hm, and the cap-rocks are interpreted as Paleoproterozoic, Paleoproterozoic metamorphic rocks and Mesozoic and Neoproterozoic sedimentary rocks by remote sensing image. The geological characteristics of the dry-hot rock in Dushancheng area are superior to those of the dry-hot rock geothermal resources initially established by Lin Wenjing. It is presumed that there are high radioactive hot type dry-hot rock resources in depth, and the intersection locations of fractures are the most favorable places for storage and release of underground hot water. It is suggested that further geophysical prospecting, deep drilling and hot spring verification should be carried out.

Key words: Dushancheng area, dry hot rock, exploration model, remote sensing geology, aeromagnetic negative anomaly, geothermal gradient

CLC Number: 

  • P627
[1] Grant M A, Bixley P F. Geothermal Reservoir Engineering[M]. New York:Academic Press Inc, 2011.
[2] 甘浩男,王贵玲,蔺文静,等.中国干热岩资源主要赋存类型与成因模式[J].科技导报,2015,33(19):22-27. Gan Haonan, Wang Guiling, Lin Wenjing, et al. Research on the Occurrence Types and Genetic Models of Hot Dry Rock Resources in China[J]. Science & Technology Review, 2015, 33(19):22-27.
[3] 蔺文静,甘浩男,王贵玲, 等.我国东南沿海干热岩赋存前景及与靶区选址研究[J].地质学报,2016, 90(8):2043-2058. Lin Wenjing, Gan Haonan, Wang Guiling, et al. Occurrence Prospect of HDR and Target Site Selection Study in South Eastern of China[J]. Acta Geologica Sinica, 2016, 90(8):2043-2058.
[4] 陆川,王贵玲.干热岩研究现状与展望[J].科技导报,2015,33(19):13-21. Lu Chuan, Wang Guiling. Current Status and Prospect of Hot Dry Rock Research[J]. Science & Technology Review, 2015, 33(19):13-21.
[5] Genter A, Traineau H, Dezayes C, et al. Fracture Analysis and Reservoir Characterization of the Granitic Basement in the HDR Soultz Project (France)[J]. Geothermal Science and Technology, 1995, 4(3):189-214.
[6] Roger P. The Rosemanowes HDR Project 1983-1991[J]. Geothermics, 1999, 28(4/5):603-615.
[7] Gallagher K. Thermal Conductivity of Sedimentaryand Basement Rocks from the Eromanga and Cooper Basins, South Australia[J]. Exploration Geophysics, 1987, 18:381-392.
[8] 丁建华, 肖克炎. 遥感技术在我国矿产资源预测评价中的应用[J]. 地球物理学进展,2006,21(2):588-593. Ding Jianhua, Xiao Keyan. The Application of Remote Sensing in Mineral Resource Assessment Area[J]. Progress in Geophysics,2006, 21(2):588-593
[9] 田淑芳, 詹骞. 遥感地质学[M]. 北京:地质出版社, 2013. Tian Shufang, Zhan Qian. Remote Sensing Geology[M]. Beijing:Geological Publishing House, 2013.
[10] 郗国庆.遥感及地球物理方法在尉犁地区寻找隐伏岩体中的应用[J]. 化工矿产地质, 2012, 34(2):110-114. Xi Guoqing. Application of Remotes-Sensing and Geophysical Magnetic in Searching Buried Rocks of Yuli Area[J]. Geology of Chemical Minerals, 2012, 34(2):110-114.
[11] 王学佑. 遥感图象在找寻铀矿中的应用[J]. 矿床地质, 1986, 5(3):49-59. Wang Xueyou. The Application of Remote Sensing Imagines in Uranium Prospecting[J]. Mineral Deposits, 1986, 5(3):49-59
[12] 王学佑, 蒋辅亮, 曲和荣,等.遥感地质在太行山中段金(银)找矿预测中的效果[J]. 黄金科学技术, 1990(9):14-20. Wang Xueyou, Jang Fuliang, Qu Herong, et al. Effect of Remote Sensing Geology on Gold (Silver) Prospecting in the Middle Part of Taihang Mountains[J]. Gold Science and Technology, 1990(9):14-20.
[13] 王瑞雪, 史茂, 苏杰. 云南澜沧老厂矿区影像线-环结构矿床定位模式研究[J]. 矿床地质, 2007, 26(5):541-549. Wang Ruixue, Shi Mao, Su Jie. A Linear-Ring Structure Model for Ore Deposit Location in Laochang Ore District of Lancang County, Yunnan Province[J]. Mineral Deposits, 2007, 26(5):541-549.
[14] 杨波, 吴德文, 赖健清, 等. 遥感技术在腾冲西南地区地热资源研究预测中的应用[J]. 国土资源遥感, 2003, 15(2):23-26. Yang Bo, Wu Dewen, Lai Jianqing, et al. The Application of Remote Sensing Technology to the Study and Forecast of Terrestrial Heat Resources in Southwestern Tengchong Area, Yunnan Province[J]. Romote Sensing for Land Resources, 2003, 15(2):23-26.
[15] Qin Q, Zhang N, Nan P, et al. Geothermal Area Detection Using Landsat ETM+ Thermal Infrared Data and Its Mechanistic Analysis:A Case Study in Tengchong, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(4):552-559.
[16] 熊永柱,陈峰,黄少鹏. 基于遥感技术的腾冲地热异常区识别[J]. 成都理工大学学报(自然科学版),2016,43(1):109-118. Xiong Yongzhu, Chen Feng, Huang Shaopeng. Application of Remote Sensing Technique to the Identification of Geothermal Anomaly in Tengchong Area, Southwest China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1):109-118.
[17] 许军强,白朝军,刘嘉宜.基于遥感技术的长白山火山区地热预测研究[J].国土资源遥感,2008,20(1):68-71. Xu Junqiang, Bai Chaojun, Liu Jiayi. Geothermal Resource Prognosis Based on Remote Sensing Technology in Changbaishan Volcanic Area[J]. Remote Sensing for Land Resources, 2008,20(1):68-71.
[18] 闫佰忠,邱淑伟,肖长来,等.长白山玄武岩区地热异常区遥感识别[J].吉林大学学报(地球科学版),2017,47(6):1819-1828. Yan Baizhong, Qiu Shuwei, Xiao Changlai, et al. Potential Geothermal Fields Remote Sensing Identification in Changbai Mountain Basalt Area[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1819-1828.
[19] Littlefied E F, Calvin W M. Geothermal Exploration Using Imaging Spectrometer Data over Fish Lake Vally, Nevada[J]. Remote Sensing of Environment, 2014, 140:509-518.
[20] 王海平, 张天乐, 王宗良. 腾冲地热泄热构造系统与水热蚀变作用[J]. 矿床地质, 2002,21(增刊1):1031-1033. Wang Haiping, Zhang Tianle, Wang Zhongliang. Geothermal Release Structures and Hydrothermal Alterations in Geothermal District of Tengchong, Yunnan Province, China[J]. Mineral Deposits, 2002,21(Sup. 1):1031-1033.
[21] 朱梅湘, 徐勇. 西藏羊八井地热田水热蚀变[J]. 地质科学, 1989(2):162-175. Zhu Meixiang, Xu Yong. Hydrothermal Alteration in the Yangbajing Geothermal Field, Tibet[J]. Scientia Geologica Sinica, 1989(2):162-175.
[22] 郭婷婷. 云南腾冲热海地热田特征及成因研究[D]. 昆明:昆明理工大学, 2013. Guo Tingting. Study on the Characteristics and Genesis of Hot Haiti Hot Field in Tengchong, Yunnan[D]. Kunming:Kunming University of Science and Technology, 2013.
[23] 张福坤. 长白山地区地热资源潜力预测遥感研究[D]. 长春:吉林大学, 2016. Zhang Fukun. Remote Prediction of Geothermal Resource Potential in the Changbai Mountain Area[D]. Changchun:Jilin University, 2016.
[24] 陈超. 太行山中北段构造控矿作用研究[D]. 北京:中国地质大学(北京), 2013. Chen Chao. Research on the Ore-Controlling Role of Structure in the Middle-North Section of the Taihang Mountains[D]. Beijing:China University of Geosciences (Beijing), 2013.
[25] 张晔卿.河北省太行山中-北段一比五万区调片区总结说明书[R]. 廊坊:河北省区域地质矿产调查研究所第一研究室,2002. Zhang Yeqing.Summary of Zone One to Fifty Thousand in the Middle North Section of Taihang Mountains, Hebei[R]. Langfang:The first Laboratory of Hebei Regional Geology and Mineral Resources Research Institute, 2002.
[26] 李川平. 河北省龙关-涞源地区隐伏-半隐伏岩体遥感综合调查报告[R]. 石家庄:河北省遥感中心,2004. Li Chuanping. Comprehensive Investigation Report on Remote Sensing of Concealed and Semi-Concealed Rock Mass in Longguan-Laiyuan Area, Hebei Province[R]. Shijiazhuang:Remote Sensing Center of Hebei Province, 2004.
[27] 宋明辉. 内蒙苏尼特左旗地区蚀变遥感信息提取研究[D]. 长春:吉林大学, 2007. Song Minghui. Study of Remoted-Sensing Information Extraction of Alteration in Sunitezuoqi, Inner Mongolia[D]. Changchun:Jilin University, 2007.
[28] 张玉君, 曾朝铭, 陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用:方法选择和技术流程[J]. 国土资源遥感, 2003, 15(2):44-49. Zhang Yujun, Zeng Zhaoming, Chen Wei.A Study of the Method for Extraction of Alteration Anomalies from the ETM+(TM) Data and Its Application:Geologic Basis and Spectral Precondition[J]. Remote Sensing for Land & Resources, 2003, 15(2):44-49.
[29] 张福坤, 邢立新, 韩婷婷,等. 长白山地区主要断裂带与地表温度场关系研究[J]. 世界地质, 2016, 35(1):153-162. Zhang Fukun,Xing Lixin, Han Tingting, et el. Relationship Between Main Fault and Land Surface Temperature Field of Changbai Mountain Area[J]. Global Geology, 2016, 35(1):153-162.
[30] 刘瑞德. 地热田电磁法勘查与应用技术研究[D]. 北京:中国地质大学(北京), 2008. Liu Ruide. The Study of Electromagnetic Prospecting and Applied Technology on Geothermal Field[D]. Beijing:China University of Geosciences (Beijing), 2008.
[31] 周总瑛, 刘世良, 刘金侠. 中国地热资源特点与发展对策[J]. 自然资源学报, 2015(7):1210-1221. Zhou Zongying, Liu Shiliang, Liu Jinxia. Study on the Characteristics and Development Strategies of Geothermal Resources in China[J]. Journal of Natural Resources, 2015(7):1210-1221.
[32] 许军强. 长白山地表温度反演与地热分布特征研究[D]. 长春:吉林大学, 2007. Xu Junqiang. A Study on Land Surface Temperature Retrieval and the Geothermal Distribution Characteristics in Changbai Mountains[D].Changchun:Jilin University, 2007.
[33] 魏永华. 水氦测量在漳州地热田中的应用效果[J].地球科学:中国地质大学学报, 1988,13(3):21-28. Wei Yonghua. Application Results of Helium Content Measurement in Water in Zhangzhou Geothermal Field[J]. Earth Science:Journal of China University of Geosciences, 1988,13(3):21-28.
[34] 方熠, 魏永华, 贾苓希. 土壤氦气测量方法在控热构造勘查中的应用[J]. 地质科技情报, 1990,9(4):73-77. Fang Yi, Wei Yonghua, Jia Lingxi.Application of Soil Helium Measurement in Fracture Geothermal Field Exploration[J]. Geological Science and Technology Information, 1990,9(4):73-77.
[35] 赵平, 谢鄂军, 多吉,等. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 2002, 18(4):539-550. Zhao Ping, Xie Ejun, Duo Ji, et el. Geochemical Characteristics of Geothermal Gases and Their Geological Implications in Tibet[J]. Acta Petrologica Sinica, 2002, 18(4):539-550.
[36] 蔺文静,刘志明,马峰,等.我国陆区干热岩资源潜力估算[J].地球学报,2012,33(5):807-811. Lin Wenjing, Liu Zhiming, Ma Feng, et al. An Estimation of HDR Resources in China's Mainland[J]. Acta Geoscientica Sinica, 2012, 33(5):807-811.
[37] 于克君, 汤振清. 地热勘探中综合地球物理勘探方法运用探讨[C]//刘时彬. 中国西部地热资源开发战略研究论文集. 北京:中国能源研究会地热专业委员会,2001:92-99. Yu Kejun, Tang Zhenqing. Application of Comprehensive Geophysical Exploration Methods in Geothermal Exploration.[C]//Liu Shibin. Papers on Development Strategy of Geothermal Resources in Western China. Beijing:China Energy Research Society, 2001:92-99.
[38] 陈雄. 地球物理方法在干热岩勘查中的应用研究[D]. 长春:吉林大学, 2016. Chen Xiong. Research on the Application of Geophysical Methods in Hot Dry Rock Prospecting[D]. Changchun:Jilin University, 2016.
[39] 姜梓萌. 长白山地区地热资源综合地球物理研究[D]. 长春:吉林大学, 2013. Jiang Zimeng. The Study of Integrated Geophysics for Geothermal Resources Exploration in Changbai Mountain[D]. Changchun:Jilin University, 2013.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!