Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (6): 1755-1767.doi: 10.13278/j.cnki.jjuese.20180287

Previous Articles     Next Articles

Efficient Optimization of Second Order Scalar Wave Equation Numerical Simulationfor Non-Splitting PML Boundary

Yang Lingyun1,2, Wu Guochen1,2, Li Qingyang1,2   

  1. 1. School of Geosciences, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Laboratory for Marine Mineral Resources, National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
  • Received:2018-11-09 Published:2019-11-30
  • Supported by:
    Supported by National Science and Technology Major Special Sub-Project (2016ZX05024-001-008)and National Natural Science Foundation Joint Fund Project (U1562215)

Abstract: Convolutional perfectly matched layer (CPML) absorbing boundary is a method for efficiently processing artificial boundary reflection waves in numerical simulation of wave equations. Based on the traditional first-order system CPML absorption boundary conditions, the authors generalized and deduced the new CPML boundary conditions of the second-order system. Different from the CPML boundary conditions of the conventional second-order system, the core idea of the new boundary is to ignore the space-varying characteristics of partial attenuation factors in the complex-frequency domain, so as to avoid of the generation of complex convolution in the time domain, and then to obtain a second-order scalar wave equation based on CPML absorption conditions,which is then applied to the second-order scalar wave numerical simulation. Through the uniform medium model test, the memory usage of the new second-order system CPML absorbing boundary is less than that of the conventional second-order system CPML and SPML, and the effect of absorbing boundary of the new second-order system CPML is slightly inferior to the conventional second-order system CPML, but they all have obvious advantages over SPML. The stability of the new boundary conditions and the advantages in efficiency are verified by the test of layered model and Marmousi model.

Key words: absorption boundary conditions, second-order scalar wave equation, seismic forward modeling, wave equation

CLC Number: 

  • P631.4
[1] Clayton R, Engquist B. Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations[J]. Bulletin of the Seismological Society of America, 1977, 67(6):1529-1540.
[2] Reynolds C A. Boundary Conditions for the Numercial Solution of Wave Propagation Problems[J]. Geophysics, 1978, 43(6):1099-1110.
[3] 廉西猛,张睿璇. 地震波动方程的局部间断有限元方法数值模拟[J]. 地球物理学报, 2013, 56(10):3507-3513. Lian Ximeng, Zhang Ruixuan. Numerical Simulation of Seismic Wave Equation by Local Discontinuous Galerkin Method[J]. Chinese Journal of Geophysics, 2013, 56(10):3507-3513.
[4] Cerjan C, Kosloff D, Kosloff R. A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations[J]. Geophysics, 1985, 50(4):705-708.
[5] 廉西猛,单联瑜,隋志强. 地震正演数值模拟完全匹配层吸收边界条件研究综述[J]. 地球物理学进展, 2015, 30(4):1725-1733. LianXimeng, Shan Lianyu, Sui Zhiqiang. An Overview of Research on Perfectly Matched Layers Absorbing Boundary Condition of Seismic Forward Numerical Simulation[J]. Progress in Geophysics, 2015, 30(4):1725-1733.
[6] Berenger J P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves[J]. Journal of Computation Physics, 1994, 114(2):185-200.
[7] Chew W C, Weedon H W. A 3D Perfectly Matched Medium from Modified Maxwell's Equation's with Stretched Coordinates[J]. Microwave and Optical Technology Letters, 1994, 7(13):599-604.
[8] Collino F, Tsogka C. Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2001, 66(1):599-604.
[9] Komatitsch D, Trompt J. A Perfectly Matched Layer Absorbing Boundary Condition for the Second-Order Seismic Wave Equation[J]. Geophysical Journal International, 2003, 154(1):153-465.
[10] Kuzuogulu M, Mittra R. Frequency Dependence of the Constitve Paraments of Causual Perfectly Matched Anisotropic Absorbers[J]. IEEE Microwave and Guided Wave Letters, 1996, 6(12):447-449.
[11] Berenger P J. Numercial Reflection from FDTD-PMLs:A Comparison of the Split PML with the Unsplit and CFS PMLs[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3):258-265.
[12] Roden A J, Gedney D S. Convolution PML(CPML):An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media[J]. Microwave and Optical Technology Letters, 2000, 27(5):334-339.
[13] Dimitri K, Roland M. An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for the Seismic Wave Equation[J]. Geophysics, 2007, 72(5):M155-M167.
[14] Martin R,Komatitsch D, Ezziani A. An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for Seismic Wave Propagation in Poroelastic Media[J]. Geophysics, 2008, 73(4):T51-T61.
[15] Martin R,Komatitsch D, Ezziani A. A Variational Formulation of a Stabilized Unsplit Convolutional Perfectly Matched Layer for the Isotropic or Anisotropic Seismic Wave Equation[J]. Computer Modeling in Engineering & Sciences, 2008, 37(3):274-304.
[16] Martin R, Komatitsch D. An Unsplit Convolutional Perfectly Matched Layer Technique Improved at Grazing Incidence for the Viscoelastic Wave Equation[J]. Geophysical Journal International, 2009, 179(1):333-344.
[17] Pasalic D, McGarry R. Convolutional Perfectly Matched Layer for Isotropic and Anisotropic Acoustic Wave equations[C]//SEG Technical Program Expanded Abstracts 2010.[S.l.]:Society of Exploration Geophysicists, 2010:2925-2929.
[18] Drossaert F H, Giannopoulos A. Nonsplit Complex Frequency-Shifted PML Based on Recursive Integration for FDTD Modeling of Elastic Waves[J]. Geophysics, 2007, 72(2):T9-T17.
[19] Komatitsch D, Trompt J. A Perfectly Matched Layer Absorbing Boundary Condition for the Second-Order Seismic Wave Equation[J]. Geophysical Journal International, 2003, 154(1):146-153.
[20] 刑丽. 地震声波数值模拟中的吸收边界条件[J]. 上海第二工业大学学报,2006,23(4):272-278. Xing Li. Absorbing Boundary Conditions for the Numerical Simulation of Acoustic Waves[J]. Journal of Shanghai Second Polytechnic University, 2006, 23(4):272-278.
[21] Pinton G F, Dahl J, Rosenzweig S, et al. A Heterogeneous Nonlinear Attenuating Full-Wave Model of Ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(3):474-488.
[22] 李义丰,李国峰,王云. 卷积完全匹配层在两维声波有限元计算中的应用[J]. 声学学报,2010, 35(6):601-607. Li Yifeng, Li Guofeng, Wang Yun. Application of Convolution Perfectly Matched Layer in Finite Element Method Calculation for 2D Acoustic Wave[J]. Acta Acustica, 2010, 35(6):601-607.
[23] 王守东. 声波方程完全匹配层吸收边界[J]. 石油地球物理勘探,2003, 38(1):31-34. Wang Shoudong. Acoustic Wave Equation Perfectly Matches Layer Absorption Boundary[J]. Oil Geophysical Prospecting, 2003, 38(1):31-34.
[24] 胡光辉,王立歆,方伍宝. 全波形反演方法及应用[M]. 北京:石油工业出版社, 2014. Hu Guanghui, Wang Lixin, Fang Wubao. Full Waveform Inversion Method and Application[M]. Beijing:Petroleum Industry Press, 2014.
[25] 李青阳,吴国忱,梁展源. 基于PML边界的时间高阶伪谱法弹性波场模拟[J]. 地球物理学进展,2018, 33(1):228-235. Li Qingyang, Wu Guochen, Liang Zhanyuan. Time Domain High-Order Pseudo Spectral Method Based on PML Boundary for Elastic Wavefield Simulation[J]. Progress in Geophysics, 2018, 33(1):228-235.
[26] Festa G, Nielsen S. PML Absorbing Boundaries[J]. Bulletin of the Swismological Society of America, 2003, 93(2):891-903.
[27] Li Yifeng, Bou M O. Convolutional Perfectly Matched Layer for Elastic Second-Order Wave Equation[J]. The Journal of the Acoustical Society of America, 2010, 127(3):1318-1327.
[28] 田坤,黄建平,李振春,等. 实现复频移完全匹配层吸收边界条件的递推卷积方法[J]. 吉林大学学报(地球科学版), 2013, 43(3):1022-1032. Tian Kun, Huang Jianping, Li Zhenchun, et al. Recursive Convolution Method for Implementing Complex Frequency-Shifted PML Absorbing Boundary Condition[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3):1022-1032.
[29] 袁伟良,梁昌洪. 理想匹配层的综合优化[J]. 通信学报,2000, 21(3):47-51. Yuan Weiliang, Liang Changhong. General Optimization of the Perfectly Matched Layers[J]. Journal of China Institute of Communications, 2000, 21(3):47-51.
[30] Katsibas T K, Antonopulos C S. A General Form of Perfectly Matched Layers for Three-Dimensional Problems of Acoustic Scattering in Lossless and Lossy Fliuid Media[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(8):927-976.
[31] 刘有山,刘少林,张美根,等. 一种改进的二阶弹性波动方程的最佳匹配层吸收边界条件[J]. 地球物理学进展,2012, 27(5):2113-2122. Liu Youshan, Liu Shaolin, Zhang Meigen, et al. An Improved Perfectly Matched Layer Absorbing Boundary Condition for Second Elastic Wave Equation[J]. Progress in Geophysics, 2012, 27(5):2113-2122.
[1] Feng Xuan, Lu Xiaoman, Liu Cai, Zhou Chao, Jin Zelong, Zhang Minghe. Frequency-Domain Full Waveform Inversion of 2D Viscous Acoustic Wave Equation Using Decreasing Random Shot Subsampling Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1865-1873.
[2] Zhao Jianguo,Shi Ruiqi,Chen Jingyi,Zhao Weijun,Wang Hongbin,Pan Jianguo. Application of Auxiliary Differential Equation Perfectly Matched Layer for Numerical Modeling of Acoustic Wave Equations [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 675-682.
[3] ZHOU Hui, XIE Chun-lin, WANG Shang-xu, LI Guo-fa. Prestack Depth Migration for Geological Structures with Complicated Surface [J]. J4, 2012, 42(1): 262-268.
[4] WU Guo-chen, LUO Cai-ming,LIANG Kai. Frequency-Space Domain Finite Difference Numerical Simulation of Elastic Wave in TTI Media [J]. J4, 2007, 37(5): 1023-1033.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Xu-qian, SHANG Shu-bo, LIN Ya-ju, ZHOU Hong-yi,HOU Ge. The Measurement of the Hydrochemistry Mobility of the Oil Pollutant in the Aeration Zone[J]. J4, 2005, 35(04): 501 -0504 .
[2] LI Wei-zhong, WU Chong-long, TAN Zhao-hua. Geological Hazard Exploration Information System for Three Gorges Reservoir Area[J]. J4, 2006, 36(03): 424 -428 .
[3] LIU Yan-ling,NIE Lei,LIU Yong-ping. Analysis on the Asymmetrically Loaded Characteristics of the Mountain-Adjacent Tunnel[J]. J4, 2006, 36(02): 240 -0244 .
[4] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[5] LI Ying-shu,QIN De-xian,DANG Yu-tao,XUE Chuan-dong,TAN Shu-cheng,HONG Tuo. Mineralizations in Basalts of the Gejiu Tin Deposit in Yunnan Province[J]. J4, 2006, 36(03): 326 -335 .
[6] ZHAO An-ping, WANG Qing, LI Yang. Fractal Structure of Granularity Composition of Soil in Roadbed in Seasonal Frost Regions[J]. J4, 2006, 36(04): 583 -587 .
[7] FU Guang, WANG You-gong,SU Yu-ping. Evolution History of Gas Diffusion Velocity from Overpressured Source Rock of Qingshankou Group (K1qn)in Gulong Sag[J]. J4, 2007, 37(1): 91 -0097 .
[8] HE Peng-peng, YAO Lei-hua, LIU Li-peng, CHEN Qing. Reliability Analysis of A Slope Considering the Randomness of Groundwater Table[J]. J4, 2009, 39(2): 288 -0293 .
[9] LIU Zheng-hong, XU Zhong-yuan, YANG Zhen-sheng, CHEN Xiao-feng. Metamorphic Tectonite Types and Their Characteristics[J]. J4, 2007, 37(1): 24 -0030 .
[10] YU Hua-wei,SUN Jian-meng, LAI Fu-qiang, WANG Min, YANG Jin-zhou. Improving Compensated Neutron Log Vertical Resolution Under Deviated and Horizontal Well Conditions and Its Application[J]. J4, 2009, 39(2): 334 -0341 .