Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (6): 1755-1767.doi: 10.13278/j.cnki.jjuese.20180287
Previous Articles Next Articles
Yang Lingyun1,2, Wu Guochen1,2, Li Qingyang1,2
CLC Number:
[1] Clayton R, Engquist B. Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations[J]. Bulletin of the Seismological Society of America, 1977, 67(6):1529-1540. [2] Reynolds C A. Boundary Conditions for the Numercial Solution of Wave Propagation Problems[J]. Geophysics, 1978, 43(6):1099-1110. [3] 廉西猛,张睿璇. 地震波动方程的局部间断有限元方法数值模拟[J]. 地球物理学报, 2013, 56(10):3507-3513. Lian Ximeng, Zhang Ruixuan. Numerical Simulation of Seismic Wave Equation by Local Discontinuous Galerkin Method[J]. Chinese Journal of Geophysics, 2013, 56(10):3507-3513. [4] Cerjan C, Kosloff D, Kosloff R. A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations[J]. Geophysics, 1985, 50(4):705-708. [5] 廉西猛,单联瑜,隋志强. 地震正演数值模拟完全匹配层吸收边界条件研究综述[J]. 地球物理学进展, 2015, 30(4):1725-1733. LianXimeng, Shan Lianyu, Sui Zhiqiang. An Overview of Research on Perfectly Matched Layers Absorbing Boundary Condition of Seismic Forward Numerical Simulation[J]. Progress in Geophysics, 2015, 30(4):1725-1733. [6] Berenger J P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves[J]. Journal of Computation Physics, 1994, 114(2):185-200. [7] Chew W C, Weedon H W. A 3D Perfectly Matched Medium from Modified Maxwell's Equation's with Stretched Coordinates[J]. Microwave and Optical Technology Letters, 1994, 7(13):599-604. [8] Collino F, Tsogka C. Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2001, 66(1):599-604. [9] Komatitsch D, Trompt J. A Perfectly Matched Layer Absorbing Boundary Condition for the Second-Order Seismic Wave Equation[J]. Geophysical Journal International, 2003, 154(1):153-465. [10] Kuzuogulu M, Mittra R. Frequency Dependence of the Constitve Paraments of Causual Perfectly Matched Anisotropic Absorbers[J]. IEEE Microwave and Guided Wave Letters, 1996, 6(12):447-449. [11] Berenger P J. Numercial Reflection from FDTD-PMLs:A Comparison of the Split PML with the Unsplit and CFS PMLs[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3):258-265. [12] Roden A J, Gedney D S. Convolution PML(CPML):An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media[J]. Microwave and Optical Technology Letters, 2000, 27(5):334-339. [13] Dimitri K, Roland M. An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for the Seismic Wave Equation[J]. Geophysics, 2007, 72(5):M155-M167. [14] Martin R,Komatitsch D, Ezziani A. An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for Seismic Wave Propagation in Poroelastic Media[J]. Geophysics, 2008, 73(4):T51-T61. [15] Martin R,Komatitsch D, Ezziani A. A Variational Formulation of a Stabilized Unsplit Convolutional Perfectly Matched Layer for the Isotropic or Anisotropic Seismic Wave Equation[J]. Computer Modeling in Engineering & Sciences, 2008, 37(3):274-304. [16] Martin R, Komatitsch D. An Unsplit Convolutional Perfectly Matched Layer Technique Improved at Grazing Incidence for the Viscoelastic Wave Equation[J]. Geophysical Journal International, 2009, 179(1):333-344. [17] Pasalic D, McGarry R. Convolutional Perfectly Matched Layer for Isotropic and Anisotropic Acoustic Wave equations[C]//SEG Technical Program Expanded Abstracts 2010.[S.l.]:Society of Exploration Geophysicists, 2010:2925-2929. [18] Drossaert F H, Giannopoulos A. Nonsplit Complex Frequency-Shifted PML Based on Recursive Integration for FDTD Modeling of Elastic Waves[J]. Geophysics, 2007, 72(2):T9-T17. [19] Komatitsch D, Trompt J. A Perfectly Matched Layer Absorbing Boundary Condition for the Second-Order Seismic Wave Equation[J]. Geophysical Journal International, 2003, 154(1):146-153. [20] 刑丽. 地震声波数值模拟中的吸收边界条件[J]. 上海第二工业大学学报,2006,23(4):272-278. Xing Li. Absorbing Boundary Conditions for the Numerical Simulation of Acoustic Waves[J]. Journal of Shanghai Second Polytechnic University, 2006, 23(4):272-278. [21] Pinton G F, Dahl J, Rosenzweig S, et al. A Heterogeneous Nonlinear Attenuating Full-Wave Model of Ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(3):474-488. [22] 李义丰,李国峰,王云. 卷积完全匹配层在两维声波有限元计算中的应用[J]. 声学学报,2010, 35(6):601-607. Li Yifeng, Li Guofeng, Wang Yun. Application of Convolution Perfectly Matched Layer in Finite Element Method Calculation for 2D Acoustic Wave[J]. Acta Acustica, 2010, 35(6):601-607. [23] 王守东. 声波方程完全匹配层吸收边界[J]. 石油地球物理勘探,2003, 38(1):31-34. Wang Shoudong. Acoustic Wave Equation Perfectly Matches Layer Absorption Boundary[J]. Oil Geophysical Prospecting, 2003, 38(1):31-34. [24] 胡光辉,王立歆,方伍宝. 全波形反演方法及应用[M]. 北京:石油工业出版社, 2014. Hu Guanghui, Wang Lixin, Fang Wubao. Full Waveform Inversion Method and Application[M]. Beijing:Petroleum Industry Press, 2014. [25] 李青阳,吴国忱,梁展源. 基于PML边界的时间高阶伪谱法弹性波场模拟[J]. 地球物理学进展,2018, 33(1):228-235. Li Qingyang, Wu Guochen, Liang Zhanyuan. Time Domain High-Order Pseudo Spectral Method Based on PML Boundary for Elastic Wavefield Simulation[J]. Progress in Geophysics, 2018, 33(1):228-235. [26] Festa G, Nielsen S. PML Absorbing Boundaries[J]. Bulletin of the Swismological Society of America, 2003, 93(2):891-903. [27] Li Yifeng, Bou M O. Convolutional Perfectly Matched Layer for Elastic Second-Order Wave Equation[J]. The Journal of the Acoustical Society of America, 2010, 127(3):1318-1327. [28] 田坤,黄建平,李振春,等. 实现复频移完全匹配层吸收边界条件的递推卷积方法[J]. 吉林大学学报(地球科学版), 2013, 43(3):1022-1032. Tian Kun, Huang Jianping, Li Zhenchun, et al. Recursive Convolution Method for Implementing Complex Frequency-Shifted PML Absorbing Boundary Condition[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3):1022-1032. [29] 袁伟良,梁昌洪. 理想匹配层的综合优化[J]. 通信学报,2000, 21(3):47-51. Yuan Weiliang, Liang Changhong. General Optimization of the Perfectly Matched Layers[J]. Journal of China Institute of Communications, 2000, 21(3):47-51. [30] Katsibas T K, Antonopulos C S. A General Form of Perfectly Matched Layers for Three-Dimensional Problems of Acoustic Scattering in Lossless and Lossy Fliuid Media[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(8):927-976. [31] 刘有山,刘少林,张美根,等. 一种改进的二阶弹性波动方程的最佳匹配层吸收边界条件[J]. 地球物理学进展,2012, 27(5):2113-2122. Liu Youshan, Liu Shaolin, Zhang Meigen, et al. An Improved Perfectly Matched Layer Absorbing Boundary Condition for Second Elastic Wave Equation[J]. Progress in Geophysics, 2012, 27(5):2113-2122. |
[1] | Feng Xuan, Lu Xiaoman, Liu Cai, Zhou Chao, Jin Zelong, Zhang Minghe. Frequency-Domain Full Waveform Inversion of 2D Viscous Acoustic Wave Equation Using Decreasing Random Shot Subsampling Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1865-1873. |
[2] | Zhao Jianguo,Shi Ruiqi,Chen Jingyi,Zhao Weijun,Wang Hongbin,Pan Jianguo. Application of Auxiliary Differential Equation Perfectly Matched Layer for Numerical Modeling of Acoustic Wave Equations [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 675-682. |
[3] | ZHOU Hui, XIE Chun-lin, WANG Shang-xu, LI Guo-fa. Prestack Depth Migration for Geological Structures with Complicated Surface [J]. J4, 2012, 42(1): 262-268. |
[4] | WU Guo-chen, LUO Cai-ming,LIANG Kai. Frequency-Space Domain Finite Difference Numerical Simulation of Elastic Wave in TTI Media [J]. J4, 2007, 37(5): 1023-1033. |
|