Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (6): 1741-1754.doi: 10.13278/j.cnki.jjuese.20190018

Previous Articles     Next Articles

Enlightenment of the Characteristics of Gravity and Magnetic Field on the Tectonic Framework and Metallogenesis of the Zhaxikang Ore-Concentrating Area,Tibet

Fan Wenxin1,2, Li Guangming2, Jiao Yanjie2, Liang Shengxian2   

  1. 1. Faculty of Earth Sciences, Chengdu University of Technology, Chengdu 610081, China;
    2. Chengdu Geological Survey Center, China Geological Survey, Chengdu 610081, China
  • Received:2019-02-11 Published:2019-11-30
  • Supported by:
    Supported by Geological Survey Second Level Project of China Geological Survey (DD20160015-29)

Abstract: Affected by the collisional orogeny of Indian-Asian land-continent,the fracture structure developed in the Zhaxikang ore-concentrating area. The Pb-Zn polymetallic ore bodies in the area are occurred in the Lower Jurassic Ridang Formation. The vein-like and lenticular ore-bearing rock consists of carbonate-bearing slate, calcareous slate and tectonic breccias and the ore body is strictly controlled by the near N-S and N-E fractures. In order to understand the tectonic conditions and the relationships of the Zhaxikang ore area between tectonic and mineralization, the author processes the data obtained from the 1:50 000 gravity and magnetic measurement with upward extension, indicating that the ore-concentrating area has the anti-L abnormal partition feature and known deposits are in the low-magnetic and low-heavy areas, and there are many hidden rock masses in the deep. Then processes the data with horizontal derivative, horizontal gradient modulus and vertical second-order derivative,interpreting the four main faults in the ore-concentrating area and a secondary fault the fault is the main ore-control fault. It is proposed that the main fault or the secondary fault trap area is a favorable ore-forming area, and four ore-forming favorable areas are delineated, combined with chronological geology and geochemical characteristics discusses the relationships of the framework and mineralization. It is believed that when there is a certain structural framework, there is potential for prospecting.

Key words: Zhaxikang ore area, tectonic framework, gravity and magnetic, fracture, concealed rock mass, prospecting

CLC Number: 

  • P631
[1] 侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:主碰撞造山成矿作用[J].矿床地质, 2006, 25(4):337-358. Hou Zengqian, Yang Zhusen, Xu Wenyi, et al.In Tibetan Collisional Orogenic Belt:Mineralization in Main Collisional Extension Setting[J]. Deposit Geology, 2006, 25(4):337-358.
[2] 侯增谦,曲晓明,杨竹森,等.青藏高原碰撞造山带:Ⅲ:后碰撞伸展成矿作用[J].矿床地质, 2006, 25(6):629-651. Hou Zengqian, Qu Xiaoming, Yang Zhusen, et al. In Tibetan Collisional Orogenic Belt:Ⅲ:Post-Collision Extension and Mineralization[J]. Deposit Geology, 2006, 25(6):629-651.
[3] 莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘, 2003, 10(3):135-148. Mo Xuanxue, Zhao Zhidan, Deng Jinfu, et al. Volcanic Response of the Main Collision Process in India-Asian Continent[J].Earth Science Frontiers, 2003, 10(3):135-148.
[4] 侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ:晚碰撞转换成矿作用[J].矿床地质, 2006, 25(5):521-543. Hou Zengqian, Pan Guitang, Wang Anjian, et al. In Tibetan Collisional Orogenic Belt:Ⅱ Late Collision Conversion and Mineralization[J]. Deposit Geology, 2006, 25(5):521-543.
[5] 侯增谦.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质, 2006, 33(2):340-351. Hou Zengqian. Mineralization of the Collisional Orogenic Belt of the Tibet:Tectonic Setting, Spatial and Temporal Distribution and Main Types[J]. Chinese Geology, 2006, 33(2):340-351.
[6] 尹安.喜马拉雅造山带新生代构造演化:沿走向变化的构造几何形态、剥露历史和前陆沉积的约束[J].地学前缘, 2006, 13(5):416-515. Yin An. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry,Exhumation History, and Foreland Sedimentation[J]. Earth Science Frontiers, 2006, 13(5):416-515.
[7] Coleman M,Hodges K.Evidence for Tibetan Plateau Uplift Before 14 Myr Ago from a New Minimum Age for East-West Extension[J].Nature, 1995, 374:49-52.
[8] Blisniuk P M,Hacker B R,Glodny J,et al.Normal Faulting in Central Tibet Since at Least 135 Myr Ago[J]. Nature, 2001, 412:628-628.
[9] 张进江,郭磊,张波.北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征[J].地质科学, 2007, 42(1):16-30. Zhang Jinjiang, Guo Lei, Zhang Bo. Structure and Kinematics of the Yalaxiangbo Dome in the Northern Himalayan Dome Belt, China[J]. Chinese Journal of Geology, 2007, 42(1):16-30.
[10] 曾令森,刘静,高利娥,等.藏南也拉香波穹窿早渐新世地壳深熔作用及其地质意义[J].科学通报, 2009, 54(3):373-381. Zeng Lingsen, Liu Jing, Gao Li'e, et al. Early Oligocene Crustal Anatexis in the Yelaxiangbo Dome, Southern Tibet and Geological Implications[J]. Chinese Science Bulletin, 2009, 54(3):373-381.
[11] 胡古月,曾令森,戚学祥,等.藏南特提斯喜马拉雅带始新世隆子-恰嘎次火山岩区:雅拉香波二云母花岗岩的高位岩浆体系[J]. 岩石学报, 2011, 27(11):3308-3318. Hu Guyue, Zeng Lingsen, Yan Xuexiang, et al. The Mid-Eocene Subvolcanic Field in the Lhunze-Qiaga Area,Tethyan Himalaya,Southern Tibet:A High-Level Magmatic Suite Related to the Yardio Two-Mica Granite[J]. Acta Petrologica Sinica, 2011, 27(11):3308-3318.
[12] 张志,张林奎,李光明,等.北喜马拉雅错那洞穹窿:片麻岩穹窿新成员与穹窿控矿新命题[J].地球学报, 2017, 38(5):754-766. Zhang Zhi, Zhang Linkui, Li Guangming, et al. The Cuonadong Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role[J]. Acta Geoscientica Sinica, 2017, 38(5):754-766.
[13] Burg J P,Guiraud M,Chen G M,et al.Himalayan Metamorphism and Deformations in the North Himalayan Belt (Southern Tibet,China)[J].Earth and Planetary Science Letters, 1984, 69(2):391-400.
[14] Burchfiel B C,Chen Z,Hodges K V,et al.The South Tibetan Detachment System,Himalayan Orogen:Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt[J].Geological Society of American Special, 1992, 269(21):1-41.
[15] 陈智梁,刘宇平.藏南拆离系[J].沉积与特提斯地质, 1996, 16(20):40-42. Chen Zhiliang, Liu Yuping. The Southern Tibet Detachment System[J].Sedimentary Geology and Tethyan Geology, 1996, 16(20):40-42.
[16] 董汉文,许志琴,孟元库,等.藏南错那洞淡色花岗岩年代学研究及其对藏南拆离系活动时间的限定[J].岩石学报, 2017, 33(12):3741-3752. Dong Hanwen, Xu Zhiqin, Meng Yuanku, et al. Geochronology of Leucogranites in the Cuonadong Dome, Southern Tibet and Limitation of the Timing of the Southern Tibet Detachment System (STDS)[J].Acta Petrologica Sinica, 2017, 33(12):3741-3752.
[17] Patrick L F.Manaslu Leucogranite:A Collision Signature of the Himalaya:A Model for Its Genesis and Emplacement[J].Journal of Geophysical Research, 1981, 86(B11):10545-10568.
[18] Guillot S,Patrick L F. Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites[J].Lithos, 1995, 35(3):221-234.
[19] 吴建阳,李光明,周清,等.藏南扎西康整装勘查区成矿体系初探[J].中国地质, 2015, 42(6):1674-1683. Wu Jianyang, Li Guangming, Zhou Qing, et al. APreliminary Study of the Metallogenic System in the Zhaxikang Integrated Exploration Area, Southern Tibet[J]. Geology in China, 2015, 42(6):1674-1683.
[20] 李光明,张林奎,焦彦杰,等.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J].矿床地质, 2017, 36(4):1003-1008. Li Guangming, Zhang Linkui, Jiao Yanjie, et al. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet[J]. Mineral Deposits, 2017, 36(4):1003-1008.
[21] 聂凤军,胡朋,江思宏,等.藏南地区金和锑矿床(点)类型及其时空分布特征[J].地质学报, 2005, 79(3):373-385. Nie Fengjun, Hu Peng, Jiang Sihong, et al. Type and Temporal-Spatial Distribution of Au and Sb Deposits (Prospects) in Southern Tibet, China[J]. Acta Geologica Sinica, 2005, 79(3):373-385.
[22] 杨竹森,侯增谦,高伟,等.藏南拆离系锑金成矿特征与成因模式[J].地质学报, 2006, 80(9):1377-1391. Yang Zhusen, Hou Zengqian, Gao Wei, et al. Metallogenic Characteristics and Genetic Model of Sb-Au Deposits in South Tibetan Detachment System[J]. Acta Geologica Sinica, 2006, 80(9):1377-1391.
[23] 孟祥金,杨竹森,戚学祥,等.藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应[J].岩石学报, 2008, 24(7):1649-1655. Meng Xiangjin, Yang Zhusen, Yan Xuexiang, et al.Si-O-H Isotopic Compositions of Zhaxikang Sb Polymetallic Deposit in Southern Tibet and Its Responses to the Ore-Controlling Structure[J]. Acta Petrologica Sinica, 2008, 24(7):1649-1655.
[24] 梁维,侯增谦,杨竹森,等.藏南扎西康大型铅锌银锑多金属矿床叠加改造成矿作用初探[J].岩石学报, 2013, 29(11):3828-3842. Liang Wei, Hou Zengqian, Yang Zhusen, et al. Remobilization and Overprinting in the Zhaxikang Pb-Zn-Ag-Sb Polymetal Ore Deposit, Southern Tibet:Implications for Its Metallogenesis[J]. Acta Petrologica Sinica, 2013, 29(11):3828-3842.
[25] 焦彦杰,梁生贤,郭镜,等.西藏扎西康铅锌银矿床含矿走滑断裂地球物理特征及找矿方向[J].地质找矿论丛, 2016, 31(3):434-439. Jiao Yanjie, Liang Shengxian, Guo Jing, et al. The Geophysical Characteristics of the Ore-Hosted Strike Slip Fault and the Prospecting Direction in Zhaxikang Pb-Zn-Ag Deposit,Tibet[J]. Contributions to Geology and Mineral Resources Research, 2016, 31(3):434-439.
[26] 易继宁.藏南扎西康式铅锌成矿作用与多元地学信息找矿预测研究[D]. 北京:中国地质大学(北京), 2017. Yi Jining.The Study of Mineralization and Multi-Information Prediction of Zhaxikang-Style Zn-Pn Deposit, Southern Tibet[D]. Beijing:China University of Geosciences (Beijing), 2017.
[27] 李关清.西藏扎西康锑硫盐多金属矿床成矿机制与区域成矿潜力评价[D].北京:中国地质大学(北京), 2015. Li Guanqing.Metallogenetic Mechanism and Ore-forming Potential Evaluation of the Zhaxikang Sb (Sulfur Salts) Polymetallic Deposits in Tibet[D]. Beijing:China University of Geosciences (Beijing), 2015.
[28] 王艺云,唐菊兴,郑文宝,等.西藏隆子县扎西康锌多金属矿床矿石组构研究及成因探讨[J].地球学报, 2012, 33(4):681-692. Wang Yiyun, Tang Juxing, Zheng Wenbao, et al. A Tentative Discussion on Ore Fabricand Genesis of the Zhaxikang Zn Polymetallic Deposit, Lhunze County, Tibet[J]. Acta Geoscientia Sinica, 2012, 33(4):681-692.
[29] 李应栩,李光明,董随亮,等.西藏扎西康多金属矿床成矿过程中的流体性质演化初探[J].矿物岩石地球化学通报, 2015, 34(3):571-582. Li Yingxu,Li Guangming,Dong Suiliang,et al. Preliminary Study on Fluid Evolution in the Ore Forming Process of the Zhaxikang Polymetallic Deposit,Tibet,China[J].Bulletin of Mineralogy Petrology, 2015, 34(3):571-582.
[30] 林彬,郑文宝,徐云峰,等.典型矿物化学特征对藏南扎西康矿床成因的启示[J]. 矿物学报,2013,33(增刊2):794-795. Lin Bin, Zheng Wenbao, Xu Yunfeng, et al.Enlightenment of Typical Mineral Chemistry Characteristics on the Genesis of the Zhaxikang Deposit in Southern Tibet[J]. Acta Mineralogica Sinica,2013,33(Sup.2):794-795.
[31] 梁维.特提斯喜马拉雅金锑铅锌成矿带成矿作用研究[D].北京:中国地质大学(北京), 2014. Liang Wei. Metallogenesis of Au-Sb-Pb-Zn Mineralization in Tethys Himalaya Belt, South Tibet,China[D].Beijing:China University of Geosciences (Beijing), 2014.
[32] 卿成实,周清,吴建阳,等.西藏扎西康铅锌多金属矿床原生晕特征[J].岩石矿物学杂志, 2014, 33(6):1113-1126. Qing Chengshi, Zhou Qing, Wu Jianyang, et al. Primary Halo Characteristics of the Zhaxikang Pb-Zn Polymetallic Deposit, Tibet[J]. Acta Petrologica et Mineralogica, 2014, 33(6):1113-1126.
[33] 张建芳,郑有业,张刚阳,等.北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约[J].地球科学:中国地质大学学报, 2010, 35(6):1000-1010. Zhang Jianfang, Zheng Youye, Zhang Gangyang, et al. Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Constraints from Multi-Isotope Geochemistry[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(6):1000-1010.
[34] 郑有业,刘敏院,孙祥,等.西藏扎西康锑多金属矿床类型、发现过程及意义[J].地球科学:中国地质大学学报, 2012, 37(5):1003-1014. Zheng Youye, Liu Minyuan, Sun Xiang, et al. Type,Discovery Process and Significance of ZhaxikangSb Polymetallic Ore Deposit,Tibet[J]. Earth Science:Journal of China University of Geosciences, 2012, 37(5):1003-1014.
[35] 李关清,顾雪祥,程文斌,等.藏南扎西康锑硫盐多金属矿床成矿物质来源分析:兼论北喜马拉雅成矿带主要矿床矿质来源的差异性[J].地学前缘, 2014, 21(5):90-104. Li Guanqing, Gu Xuexiang, Cheng Wenbin, et al. The Analysis of Metallogenic Material Sources of the Zhaxikang Sb (Sulfur Salts) Polymetallic Deposits in Southern Tibet:Concurrent Discussion on the Differences of the Ore Sources of Major Mineral Deposits in North Himalayan Metallogenic Belt[J]. Earth Science Frontiers, 2014, 21(5):90-104.
[36] Harrison T M,Copeland P,Kidd W S,et al. Raising Tibet[J]. Science, 1992, 255:1663-1670.
[37] 尹安.喜马拉雅-青藏高原造山带地质演化:显生宙亚洲大陆生长[J].地球学报, 2001, 22(3):193-230. Yin An. Geologic Evolution of the Himalayan-Tibetan Orogen in the Context of Phanerozoic Continental Growth of Asia[J]. Acta Geoscientica Sinica, 2001, 22(3):193-230.
[38] Hauck M L,Nelson K D,Brown L D,et al.Crustal Structure of the Himalayan Orogen at~90° East Longitude from Project INDEPTH Deep Reflection Profiles[J]. Tectonics, 1998, 17(4):481-500.
[39] Lee J,Hacker B,Wang Y.Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome,Southern Tibet[J].Journal of Structural Geology, 2004, 26(12):2297-2316.
[40] 梁维,杨竹森,郑远川.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J].地质学报, 2015, 89(3):560-568. Liang Wei, Yang Zhusen, Zheng Yuanchuan. The Zhaxikang Pb-Zn Polymetallic Deposit:Ar-Ar Age of Sericite and Its Metallogenic Significance[J]. Acta Geologica Sinica, 2015, 89(3):560-568.
[41] 韩飞,李光明,董随亮,等.西藏扎西康铅锌矿床氧化带的研究及其对找矿的示踪作用[J].吉林大学学报(地球科学版),2015,45(3):686-687. Han Fei,Li Guangming,Dong Suiliang,et al. Study on the Oxidation Zone of the Zhaxikang Pb-Zn Deposit in Tibet and Its Tracer Effect on Prospecting[J].Journal of Jilin University(Earth Science Edition),2015,45(3):686-687.
[42] 张建芳.北喜马拉雅扎西康铅锌锑银矿床成因研究[D]. 北京:中国地质大学(北京), 2010. Zhang Jianfang. The Genesis Study of Zhaxikang Pb-Zn-Sb Silver Deposit, North Himalayan[D]. Beijing:China University of Geosciences (Beijing), 2010.
[43] Zhang J J,Yang X Y,Qi G W,et al. Geochronology of the Malashan Dome and Its Application in Formation of,the Southern Tibet Detachment System (STDS) and Northern Himalayan,Gneiss Domes (NHGD)[J].Acta Petrologica Sinica, 2011, 27(12):3535-3544.
[44] 王晓先,张进江,闫淑玉,等.藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义[J].地质通报, 2016, 35(1):91-103. Wang Xiaoxian, Zhang Jinjiang, Yan Shuyu, et al. Age and Geochemistry of the Cuona Leucogranite in Southern Tibet and Its Geological Implications[J]. Geological Bulletin of China, 2016, 35(1):91-103.
[45] 付建刚,李光明,王根厚,等.北喜马拉雅双穹窿构造的建立:来自藏南错那洞穹窿的厘定[J].中国地质, 2018, 45(4):783-802. Fu Jiangang, Li Guangming, Wang Genhou, et al. Establishment of the North Himalayan Double Gneiss Domes:Evidence from Field Identification of the Cuonadong Dome, South Tibet[J]. Geology in China, 2018, 45(4):783-802.
[46] 付建刚,李光明,王根厚,等.北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹窿Ar-Ar年代学证据[J].地球科学, 2018, 43(8):2638-2650. Fu Jiangang, Li Guangming, Wang Genhou, et al.Timing of E-W Extension Deformation in North Himalaya:Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet[J]. Earth Science, 2018, 43(8):2638-2650.
[47] Fu J G,Li G M,Wang G H,et al.Synchronous Granite Intrusion and E-W Extension in the Cuonadong Dome, Southern Tibet, China:Evidence from Field Observations and Thermochronologic Results[J]. International Journal of Earth Sciences, 2018, 107(1/2):1-19.
[48] 赖杨.藏南扎西康铅锌矿床矿石特征研究及矿床成因浅析[D].成都:成都理工大学,2014. Lai Yang.The Study of the Ore Characteristics and the Simple Analysis of Deposit Genesis in the Zhaxikang Pb-Zn Deposit, South Tibet[D]. Chengdu:Chengdu University of Technology, 2014.
[49] 董随亮,黄勇,李光明,等.藏南姐纳各普金矿地质特征及成矿时代约束:对扎西康矿集区铅锌金锑成矿系统的启示[J].资源与产业, 2017, 19(5):56-64. Dong Suiliang, Huang Yong, Li Guangming, et al. Geology and Mineralization Dating of Jienagepu Au Deposit in Southern Tibet with Implication from Zhaxikang Pb-Zn-Au-Sb Metallogenic System[J]. Resources and Industries, 2017, 19(5):56-64.
[50] 于淼.藏南扎西康锑铅锌银矿床地质及成矿流体特征[D].北京:中国地质大学(北京),2015. Yu Miao.Characteristics of Ore Geology and Ore-Forming Fluid in the Zhaxikang Sb-Pb-Zn-Ag Deposit, Southern Tibet, China[D].Beijing:China University of Geosciences (Beijing), 2015.
[51] 林彬,唐菊兴,郑文宝.扎西康锌多金属矿床的多元同位素组成对矿床成因的启示[J].矿床地质,2014,33(增刊1):21-22. Lin Bin,Tang Juxing,Zheng Wenbao. Enlightenment of the Multi-Isotopic Composition of Zhaxikang Polymetallic Deposit on the Genesis of Deposits[J].Mineral Deposits,2014,33(Sup.1):21-22.
[52] 朱黎宽.西藏扎西康铅锌锑多金属矿床地质特征及流体包裹体研究[D].北京:中国地质大学(北京),2011. Zhu Likuan. Studies on Geological Characteristics and Fluid Inclusions in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit, Tibet, China[D]. Beijing:China University of Geosciences (Beijing),2011.
[53] 朱黎宽,顾雪祥,李关清,等.藏南扎西康铅锌锑多金属矿床流体包裹体研究及地质意义[J].现代地质, 2012, 26(3):453-463. Zhu Likuan, Gu Xuexiang, Li Guanqing, et al. Fluid Inclusions in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit,South Tibet, and Its Geological Significance[J]. Geoscience, 2012, 26(3):453-463.
[54] 代鸿章,程文斌,李关清,等.藏南扎西康Pb-Zn-Sb-Ag多金属矿床典型矿物标型研究[J].矿物学报, 2014, 34(1):72-82. Dai Hongzhang, Cheng Wenbin, Li Guanqing, et al. A Study on the Typomorphic Characteristics of Typical Mineral from Zhaxikang Pb-Zn-Sb-Ag Polymetallic Deposit in Southern Tibet[J]. Acta Mineralogica Sinica, 2014, 34(1):72-82.
[55] 李洪梁,李光明,董随亮,等. 藏南扎西康铅锌锑银多金属矿床S、Pb同位素特征及其指示意义[J].吉林大学学报(地球科学版),2015,45(3):602-603. Li Hongliang, Li Guangming, Dong Suiliang, et al. S and Pb Iisotopic Characteristics of the Zhaxikang Pb-Zn-Sb-Ag Polymetallic Deposit in Southern Tibet and Their Indicative Significance[J]. Journal of Jilin University(Earth Science Edition), 2015,45(3):602-603.
[1] Sun Keming, Zhang Yu. Simulation of Influence of Fracture-Network Spacing on Temperature of HDR Geothermal Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1723-1731.
[2] Zhou Zhou, Jin Yan, Zeng Yijin, Zhang Xudong, Zhou Jian, Wang Wenzhi, Meng Han. Experimental Study on Hydraulic Fracturing Physics Simulation, Crack Initiation and Propagation in Hot Dry Rock Geothermal Reservoir in Gonghe Basin, Qinghai [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1425-1430.
[3] Luo Teng, Feng Xuan, Guo Zhiqi, Liu Cai, Liu Xiwu. Seismic Inversion of Anisotropy Parameters of Fractured Reservoirs by Simulated Annealing and Particle Swarm Optimization [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1466-1476.
[4] Wang Lu, Yang Shenglai, Peng Xian, Liu Yicheng, Xu Wei, Deng Hui. Pore Structure Characteristics and Storage-Seepage Capability of Multi-Type Reservoirs in Fracture-Cavity Carbonate Gas Reservoirs: A Case Study of Deng-4 Member in Gaoshiti-Moxi Area, Sichuan Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 947-958.
[5] Hao Xingzhong, Yang Yiheng, Li Yingping, Gao Huali, Chen Lei. Ore-Controlling Characteristics and Prospecting Criteria of Iron Deposits in Qihe Area of Western Shandong [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 982-991.
[6] Fan Dongyan, Sun Hai, Yao Jun, Li Huafeng, Yan Xia, Zhang Kai, Zhang Lin. Parametric Analysis of Different Injection and Production Well Pattern in Enhanced Geothermal System [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 797-806.
[7] Li Huan, Wang Qingbin, Pang Xiaojun, Feng Chong, Liu Xiaojian. Generation of High Quality Near Source Glutenite Reservoir of 2nd Member of Shahejie Formation in Lüda-29 Structure, Liaodong Sag, Bohai Bay Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 294-309.
[8] Wang Zhuwen, Xu Fanghui, Liu Jinghua, Ning Qinqin, Yu Yang. Stoneley Wave Response Characteristics of Gas-Bearing Fractural Volcanic Formation in Liaohe Eastern Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1876-1888.
[9] Ma Guoqing, Ming Yanbo, Huang Danian. Distribution Characteristics Study of Cenozoic Basement of Lishui-Jiaojiang Sag Based on Gravity and Magnetic Anomalies [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1493-1500.
[10] Wang Kun, Zeng Zhaofa, Zhang Lianghuai, Li Jing, Lu Qi, Zhang Jianmin. Integrated Geophysical Exploration of Volcanic Edifice of Hengtoushan Volcano, Yitong Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1522-1531.
[11] Li Zhiyuan, Gong Hailing, Zhang Yonghui, Li Pu. Fracture Development Law and Its Influence on the Stability of Surrounding Rock of a Power Station Underground Plant [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1574-1580.
[12] Ming Tianxue, Tang Zhong, Li Yongping, Luo Jianhong, Li Rong, Xue Ge, Chen Lei. Prospecting Potential and Primary Halo Characteristics of Dongping Pb-Zn Deposit in Qiaojia County, Yunnan [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1394-1404.
[13] Liao Dongliang, Zeng Yijin. Establishment of Formation Shear Fracture Model by Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1268-1276.
[14] Deng Xinhui, Liu Cai, Guo Zhiqi, Liu Xiwu, Liu Yuwei. Full Wave Field Seismic Response Simulation and Analysis of Anisotropic Shale Reservoir in Luojia Area of Jiyang Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1231-1243.
[15] Zhang Bing, Guo Zhiqi, Xu Cong, Liu Cai, Liu Xiwu, Liu Yuwei. Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!