Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (2): 473-482.doi: 10.13278/j.cnki.jjuese.20190259

Previous Articles    

Optimal Probability Distribution of Thermal Conductivity Parameters of Canal Foundation Clay in Cold Regions

Shi Lianghong, Li Shuangyang   

  1. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2019-12-04 Published:2021-04-06
  • Supported by:
    Supported by the National Key R&D Program of China (2017YFC0405101), the National Natural Science Foundation of China (41672315),the Science and Technology Program of Tibet Autonomous Region (XZ201801-GB-07),the Program of Youth Innovation Promotion Association of CAS (Y201975) and the Foundation of State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZQ-53)

Abstract: In order to analyze the random distribution characteristics and probability distribution model, taking the thermal conductivity of canal foundation clay in cold regions as a sample, the probability distribution laws of the thermal parameters of frozen soils were inferred by using the classical distribution fitting method, polynomial method, maximum entropy method, and normal information diffusion method. Through analyzing the dispersion of thermal parameters and comparing the probability distribution curve, fitting test values, and cumulative probability distribution values, the advantages and disadvantages of different methods to describe the randomness of thermal parameters were evaluated. The results show that the thermal parameters of canal foundation clay are variable in cold regions. The random fluctuation of thermal parameters can be described by the normal information diffusion method. Among the four methods, the fitting precision of the normal information diffusion method is the highest. Based on the sensitivity of the thermal parameters of canal foundation clay to temperature, a standard with an ideal fitting precision is put forward for determining the probabilistic inference interval of the thermal parameters of frozen soils.

Key words: canal, frozen soils, thermal parameters, probability distribution, cold regions

CLC Number: 

  • TU411.2
[1] 刘德仁,张东,张世民. 北方寒冷地区封闭渡槽粘贴聚氨酯板提高保温效果[J]. 农业工程学报,2013,29(9):70-75. Liu Deren, Zhang Dong, Zhang Shimin. Increase Insulation Effect of Polyurethane Board Pasting on Closed Aqueduct Surface in Cold Regions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(9):70-75.
[2] 李杨,王清,王坛华. 冻土水热耦合模型数值求解及结果检验[J]. 吉林大学学报(地球科学版),2015,45(1):207-213. Li Yang, Wang Qing, Wang Tanhua. Numerical Solution and Test of Results for a Hydrothermal Coupled Model About Frozen Soil[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1):207-213.
[3] 王正中,李甲林,陈涛,等. 弧底梯形渠道混凝土衬砌冻胀破坏的力学模型研究[J]. 农业工程学报,2008,24(1):18-23. Wang Zhengzhong, Li Jialin, Chen Tao, et al. Mechanics Models of Frost Heaving Damage of Concrete Lining Trapezoidal Canal with Arc-Bottom[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(1):18-23.
[4] 张泽,马巍,齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报(地球科学版),2013,43(6):1904-1914. Zhang Ze, Ma Wei, Qi Jilin. Structure Evolution and Mechanism of Engineering Properties Change of Soils Under Effect of Freeze-Thaw Cycle[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6):1904-1914.
[5] Li Shuangyang, Zhang Mingyi, Tian Yibin, et al. Experimental and Numerical Investigations on Frost Damage Mechanism of a Canal in Cold Regions[J]. Cold Region Science and Technology, 2015, 116:1-11.
[6] 王正中. 梯形渠道砼衬砌冻胀破坏的力学模型研究[J]. 农业工程学报,2008,20(3):24-29. Wang Zhengzhong. Establishment and Application of Mechanics Model of Frost Heaving Damage of Concrete Lining Trapezoidal Open Canal[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 20(3):24-29.
[7] 齐吉琳,程国栋,Vermeer P A. 冻融作用对土工程性质影响的研究现状[J]. 地球科学进展,2005,20(8):887-893. Qi Jilin, Cheng Guodong, Vermeer P A. State of the Art of Influence of Freeze-Thaw on Engineering Properties of Soils[J]. Advances in Earth Sciences, 2005, 20(8):887-893.
[8] 周泓,张豫川,张泽,等. 冻融作用下冻结黄土黏聚力长期强度变化规律[J]. 岩土力学,2014,35(8):2241-2246. Zhou Hong, Zhang Yuchuan, Zhang Ze, et al. Changing Rule of Long-Term Strength of Frozen Loess Cohesion Under Impact of Freeze-Thaw Cycle[J]. Rock and Soil Mechanics, 2014, 35(8):2241-2246.
[9] 宿晓萍,王清,王文华,等. 季节冻土区盐渍土环境下混凝土抗冻耐久性机理[J]. 吉林大学学报(地球科学版),2014,44(4):1244-1253. Su Xiaoping, Wang Qing, Wang Wenhua, et al. Numerical Solution and Test of Results for a Hydrothermal Coupled Model About Frozen Soil[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4):1244-1253.
[10] 高平,张延军,方静涛,等. 浅层岩土室内、室外热物性测试的相关性[J]. 吉林大学学报(地球科学版),2014,44(1):259-267. Gao Ping, Zhang Yanjun, Fang Jingtao, et al. Correlation of Shallow Layer Rock and Soil Thermal Physical Tests in Laboratory and Field[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1):259-267.
[11] 李双洋,赖远明,张明义,等. 高温冻土弹性模量及强度分布规律研究[J]. 岩石力学与工程学报,2017,26(增刊2):4299-4305. Li Shuangyang, Lai Yuanming, Zhang Mingyi, et al. Study on Distribution Laws of Eastic Modulus and Strength of Warm Frozen Soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 26(Sup.2):4299-4305.
[12] 罗冲,殷坤龙,陈丽霞,等. 万州区滑坡滑带土抗剪强度参数概率分布拟合及优化[J]. 岩石力学与工程学报,2005,24(9):1588-1592. Luo Chong, Yin Kunlong, Chen Lixia, et al. Probability Distribution Fitting and Optimization of Shear Dtrength Parameters in Sliding Zone Along Horizontal-Stratum Landslides in Wanzhou City[J]. Chinese Journal of Rock Mechanical and Engineering, 2005, 24(9):1588-1592.
[13] 杨凯,刘东升,易前应,等. 重庆市岩石抗剪强度参数统计分析及应用[J]. 后勤工程学院学报,2008,24(2):18-21. Yang Kai, Liu Dongsheng, Yi Qianying, et al. Parameters Statistics Analysis and Application of Rock Sheering Strength in Chongqing[J]. Journal of Logistical Engineering University, 2008, 24(2):18-21.
[14] 崔洁,江权,冯夏庭,等.岩石抗剪强度参数的理论分布形态研究[J].岩石力学,2015,36(5):1261-1274. Cui Jie, Jiang Quan, Feng Xiating, et al. Theoretical Probability Distribution of Shear Strength Parameters for Rock[J]. Rock and Soli Mechanics, 2015, 36(5):1261-1274.
[15] 李小勇,张瑞婷,侯晓文,等. 太原粉质黏土工程性质指标概率特征的分析和研究[J]. 太原理工大学学报,2000, 31(3):254-258. Li Xiaoyong, Zhang Ruiting, Hou Xiaowen, et al. The Statistic Characteristics of Engineering Indexes for Taiyuan Silty Clay[J]. Journal of Taiyuan University of Technology, 2000, 31(3):254-258.
[16] Łydżba D, Różański A, Rajczakowska M, et al. Random Checkerboard Based Homogenization for Estimating Effective Thermal Conductivity of Fully Saturated Soils[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017(9):18-28.
[17] 吴晓光. 概率统计在高温冻土热学及力学性质研究中的应用[D]. 兰州:兰州大学,2013:10-23. Wu Xiaoguang. The Application of Probability and Statistics in the Study on Thermal and Mechanical Properties of Warm Frozen Soil[D]. Lanzhou:Lanzhou University, 2013:10-23.
[18] 石梁宏,李双洋,王冲,等. 冻土热物理性质的统计特征及分布规律研究[J]. 中南大学学报(自然科学版),2018,49(12):3060-3067. Shi Lianghong, Li Shuangyang, Wang Chong, et al. Study on Statistical Characters and Distribution Laws of Thermophysical Properties of Frozen Soil[J]. Journal of Central South University (Science and Technology), 2018,49(12):3060-3067.
[19] 宫凤强,黄天朗,李夕兵. 岩土参数最优概率分布推断方法及判别准则研究[J]. 岩土力学与工程学报,2016,36(12):2452-2460. Gong Fengqiang, Huang Tianlang, Li Xibing. Research on Approximation Method and Discriminative Criterion of the Optimal Probability Distribution of Geotechnical Parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 36(12):2452-2460.
[20] 苏永华,何满潮,孙晓明. 大子样岩土参数统计方法[J].岩土工程学报,2001,23(1):117-119. Su Yonghua, He Manchao, Sun Xiaoming. Approach on Asymptotic Approximations for Probability Density Function of Geotechnics Random Parameters[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1):117-119.
[21] 邓建,李夕兵,古德生.结构可靠度分析的多项式数值逼近法[J].计算力学学报,2002, 19(2):212-216. Deng Jian, Li Xibing, Gu Desheng. Numerical Approximation Method in Reliability Analysis of Engineering Structure[J]. Chinese Journal of Computational Mechanics, 2002, 19(2):212-216.
[22] 盛骤,谢式千,潘承毅. 概率论与数理统计[M]. 4版. 北京:高等教育出版社,2008. Sheng Zhou,Xie Shiqian, Pan Chengyi. Probability and Mathematical Statistics[M]. 4th ed. Beijing:High Education Press, 2008.
[23] 邓建,李夕兵,古德生.岩石力学参数概率分布的信息熵推断[J], 岩石力学与工程学报,2004, 23(13):2177-2181. Deng Jian, Li Xibing, Gu Desheng. Probability Rock Mechanics by Using Maximum Entropy Method[J]. Chinese Journal of Rock Mechanical and Engineering, 2004, 23(13):2177-2181.
[24] Huang F Q. Information Diffusion Techniques and Small-Sample Problem[J]. International Journal of Information Technology and Decision Making, 2002, 1(2):229-249.
[25] 宫凤强,李夕兵,邓建.小样本岩土参数概率分布的正态信息扩散法推断[J]. 岩石力学与工程学报,2006,25(12):2549-2564. Gong Fengqiang, Li Xibing, Deng Jian. Probability Distribution of Samples of Geotechnical Parameters Using Normal Information Spread Method[J]. Chinese Journal of Rock Mechanical and Engineering, 2006, 25(12):2549-2564.
[26] 朱唤珍,李夕兵,宫凤强. 大样本岩土参数概率分布的正态信息扩散推断[J]. 岩土力学,2015,36(11):3275-3282. Zhu Huanzhen, Li Xibing, Gong Fengqiang. Assessment of Probability Distribution of Large Samples of Geotechnical Parameters by Using Normal Information Spread Estimation Method[J]. Rock and Soil Mechanics, 2015, 36(11):3275-3282.
[27] 马建全,李广杰,徐佩华,等.基于拉丁方抽样及K-S检验的边坡可靠性分析[J].岩土力学,2011,32(7):2153-2156. Ma Jianquan, Li Guangjie, Xu Peihua, et al. Reliability Analysis of Slope with Latin Hypercube Sampling and K-S Test[J]. Rock and Soil Mechanics, 2011, 32(7):2153-2156.
[28] 刘红帅,郑桐,薄景山,等.黏性土剪切波速不确定性的统计分析[J].世界地震工程,2010,26(增刊1):99-103. Liu Hongshuai, Zheng Tong, Bo Jingshan, et al. Statistical Analysis of Uncertainty for Shear Wave Velocities of Cohesive Soils[J]. World Earthquake Engineering, 2010, 26(Sup.1):99-103.
[1] Wang Mingchang, Xu Zeshuang, Wang Fengyan, Meng Xiangyu, Ding Qing, Zhang Xinyue. Fitting Test on Probability Distribution of Discontinuity Parameters in Rock Mass Based on Photogrammetry [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1898-1906.
[2] LI Xiang-qun, SUN Chao. Subgrade Frost Heave Features and Calculation Method for Frozen Depth of #102 Highway in Jilin Province [J]. J4, 2010, 40(5): 1128-1132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!