Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (6): 1898-1906.doi: 10.13278/j.cnki.jjuese.20180026

Previous Articles    

Fitting Test on Probability Distribution of Discontinuity Parameters in Rock Mass Based on Photogrammetry

Wang Mingchang, Xu Zeshuang, Wang Fengyan, Meng Xiangyu, Ding Qing, Zhang Xinyue   

  1. College of GeoExploration Sicence and Technology, Jilin University, Changchun 130026, China
  • Received:2018-02-01 Published:2018-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China(41472243),Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Land and Resources(KF-2016-02-008)and Open Research Fund Program of Hubei Province Key Laboratory of Regional Development and Environmental Response(2015(B)003)

Abstract: The uncertainty and complexity of rock discontinuities such as trace length, occurrence and spatial combination form make it difficult to study the whole geometry of structural plane. The discontinuous surfaces with large number of random distributions in rock mass are statistically similar. Using statistical methods to describe the structural plane parameters is the basis for 3D network simulation of rock random discontinuities, and it can also provide a reliable basis for stability evaluation of rock mass. Based on the digital close-range photogrammetry technology, the slope of Dongsheng quarry in Jingyue Development Zone of Changchun City was investigated and studied, and a lot of high precision rock mass structure details were obtained such as long trace occurrence, spacing, aperture geometry parameters. We compiled the Kolmogorov-Smirnov (K-S) test program by Matlab to test the probability distribution of the structure parameters, analyzed the structure parameter types of probability distribution, used SPSS software to test the correctness of the program, and introduced and selected the optimal fitting probability model which accords with a variety of probability distribution parameters. The results show that the length and spacing of the structural surfaces in the study area obey the lognormal distribution, and the shape of the structure obeys the Gamma distribution.

Key words: close range photogrammetry, structural surface parameter, K-S method, probability distribution, fitting test

CLC Number: 

  • P583
[1] 伍法权. 统计岩体力学原理[M]. 武汉:中国地质大学出版社,1993. Wu Faquan. Principles of Statistical Mechanics of Rock Mass[M]. Wuhan:China University of Geosciences Press, 1993.
[2] 张文. 基于三维激光扫描技术的岩体结构信息化处理方法及工程应用[D]. 成都:成都理工大学,2011. Zhang Wen. Information Processing Methodon Rock Mass Structure and Its Application in Geological Engineering Based on Three-Dimensional Laser Scanning Technique[D]. Chengdu:Chengdu University of Science and Technology, 2011.
[3] 范留明,王中锋,李宁. 基于近景摄影测量法计算掘进隧洞中切穿顶拱的裂隙面产状[J]. 地球科学与环境学报, 2008,36(1):283-285. Fan Liuming, Wang Zhongfeng, Li Ning. Attitude Determination of Joint Running Through Vault Based on Close-Range Photogrammetry in Excavating Tunnel[J]. Journal of Earth Sciences and Environment, 2008, 36(1):283-285.
[4] 吴志勇,聂德新,蔡云,等. 岩体结构信息的采集处理研究[J]. 中国地质灾害与防治学报,2003,14(2):82-83. Wu Zhiyong, Nie Dexin, Cai Yun, et al. Research of Collecting Information of Rock Mass Structure[J]. The Chinese Journal of Geological Hazard and Control, 2003,14(2):82-83.
[5] 李浩,杜丽丽,贾晓敏,等. 基于数码影像的边坡工程地质编录信息系统[J]. 华南理工大学学报(自然科学版), 2008, 36(1):145-151. Li Hao, Du Lili, Jia Xiaomin, et al. Geologic Logging Information System Based on Digital Image for Slope Engineering[J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36(1):145-151.
[6] Ross-Brown D M, Atkinson K B. Terrestrial Photo-grammetry in Openpits:1:Descripion and Use of the Phototheodolite in Mine Surveying[J]. Inst Mining & Meteallurgy, 1972, 81:190-194.
[7] 王凤艳. 数字近景摄影测量快速获取岩体裂隙信息的工程应用[D]. 长春:吉林大学, 2006. Wang Fengyan. Engineering Application of Rapid Acquiring Rock Mass Fractures Information with Digital Close Range Photogrammetry[D]. Changchun:Jilin University, 2006.
[8] 胡运海. 近景摄影测量技术在滑坡监测中的运用:以北川县擂鼓镇凤凰山滑坡为例[D]. 成都:成都理工大学, 2012. Hu Yunhai. The Application of Close-Range Photogrammetry in Landslide Monitoring:Take the Landslide in Phoenix Mountain, Leigu Town, Beichuan County for Example[D]. Chengdu:Chengdu University of Technology, 2012.
[9] 高昭良. 基于多基线数字近景摄影测量的滑坡监测系统研究[J]. 城市勘测,2015(2):5-8. Gao Zhaoliang. The Research of Landslide Monitoring System Based on Multi-Baseline Digital Close-Range Photogrammetry[J]. Urban Geotechnical Investigation & Surveying, 2015(2):5-8.
[10] 巩城城,马凤山,张亚民,等. 基于岩体结构面统计与分维数的岩体质量评价及其在矿山工程中的应用[J].中国地质灾害与防治学报,2011, 22(2):92-98. Gong Chengcheng, Ma Fengshan, Zhang Yamin,et al. Rock Mass Quality Based on Discontinuity Statistics and Fractal Dimension and Its Application in Mining Areas[J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(2):92-98.
[11] 吴世伟,叶军. 参数未知的K-S法检验临界值分析[J]. 港工技术,1990, 4(1):16-20. Wu Shiwei, Ye Jun. Analysis of Critical Value by K-S Method with Unknown Parameters[J]. Port Engineering Technology, 1990, 4(1):16-20.
[12] 阮云凯,陈剑平,曹琛,等. K-S检验在裂隙岩体统计均质区划分中的应用[J]. 东北大学学报(自然科学版), 2015, 36(10):1471-1475. Ruan Yunkai, Chen Jianping, Cao Chen, et al. Application of K-S Test in Structural Homogeneity Dividing of Fractured Rock Mass[J]. Journal of Northeastern University (Natural Science), 2015, 36(10):1471-1475.
[13] Mssey L H. The Kolmogornov-Smirnov Test for Goodness of Fit[J]. American Statistical Association, 1951, 46:68-78.
[14] Lilliefors H. On the Kolmogornov-Smirnov Test for Normality with Mean and Variance Unknown[J]. American Statistical Association, 1967, 62:399-402.
[15] Li Y Y, Wang Q, Chen J P, et al. Identification of Structural Domain Boundaries at the Songta Dam Site Based on Nonparametric Tests[J]. Rock Mechanics and Mining Sciences,2014,70:177-184.
[16] 陈剑平,王清,肖树芳,等.X2检验假设分布有效性的工程地质应用[J]. 长春地质学院学报,1996, 26(3):332-335. Chen Jianping, Wang Qing, Xiao Shufang, et al. An Application of Chi-Square Test Validity of Assumed Distribution in the Engineering Geology[J]. Journal of Changchun University of Earth Sciences, 1996, 26(3):332-335.
[17] 马建全,李广杰,徐佩华,等.基于拉丁方抽样及K-S检验的边坡可靠性分析[J]. 岩土力学,2011, 32(7):2153-2156. Ma Jianquan, Li Guangjie, Xu Peihua, et al. Reliability Analysis of Slope with Latin Hypercube Sampling and K-S Test[J]. Rock and Soil Mechanics, 2011, 32(7):2153-2156.
[18] 郭跃华. 概率论与数理统计[M]. 北京:科学出版社, 2007. Guo Yuehua. Probability Theory and Mathematical Statistics[M]. Beijing:Science Press, 2007.
[19] Conver W J. A Kolmogorov Goodness of Fit Test for Distributions[J]. American Statistical Association,1972, 67:591-596.
[20] 朱红兵,何丽娟. 关于SPSS中单样本K-S检验法进行正态分布等的一致性检验时适用条件的研究[J].首都体育学院学报,2009, 21(4):466-470. Zhu Hongbing, He Lijuan. A Study on Appropriate Conditions in Consistency Test of Normal Distribution by Single Sample K-S Check in SPSS[J]. Journal of Capital Institute of Physical Education, 2009, 21(4):466-470.
[21] 陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995. Chen Jianping, Xiao Shufang, Wang Qing. Principle of Three-Dimensional Network Computer Simulation of Stochastic Discontinuous Plane[M]. Changchun:Northeast Normal University Press, 1995.
[22] 张思俊,吴世伟.结构可靠度分析中小子样概型的拟合检验[J].水电能源科学,1989,6(4):368-376. Zhang Sijun, Wu Shiwei. Test of Goodness of Fit for Small Sample Distribution in Structural Reliability Analysis[J]. International Journal Hydroelectric Energy, 1989, 6(4):368-376.
[1] Wang Feng-yan,Chen Jian-ping,Yang Guo-dong,Sun Feng-yue,Jiang Qi-gang. Solution Models of Geometrical Information of Rock Mass Discontinuities Based on Digital Close Range Photogrammetry [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1839-1846.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!