Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (5): 1408-1415.doi: 10.13278/j.cnki.jjuese.20210097

Previous Articles     Next Articles

Comparison of Normality Test Methods on Geotechnical Parameters Based on Piezocone Penetration Test

Lin Jun1,2, Cai Guojun2, Liu Songyu2, Zou Haifeng2, Hou Xinyu1   

  1. 1. School of Architecture and Civil Engineering, Jiangsu Open University, Nanjing 210036, China;
    2. Institute of Geotechnical Engineering, Southeast University, Nanjing 210009, China
  • Received:2021-03-29 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Open Fund Project of Key Laboratory of Building Collapse Mechanism and Prevention of China Earthquake Administration (FZ201101), the National Natural Science Foundation of China (U1939209), the Key Project of Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Administration (2020EEEVL0201) and the Research Subject of Major Policy Theory and Practice of China Earthquake Administration (CEAZY2020JZ07)

Abstract: Normality assumption is one of the fundamental prerequisites of geotechnical risk assessment. Currently the Kolmogorov-Smirnov (KS) test is mainly applied to assess the normality of geotechnical parameters in geotechnical literatures;However, many studies demonstrated that the power of the KS test might be the lowest among the common formal normality tests for a small sample size. With the piezocone penetration test data collected from the floodplain silts of abandoned Yellow River, the performance of four formal normality tests was assessed, including Shapiro-Wilk (SW) test, KS test, Lilliefors (LF) test, and Anderson-Darling (AD) test. The ANOVA test was utilized to identify the samples of the same population. The normality tests were performed on different sample volume. When the sample size is sufficient,the results show that:Among the four formal normality tests, the KS test provides the least conservative assessment on rejecting normality assumption, the SW test is the strictest, while the strictness of LF test and AD test is between the two; For conventional geotechnical engineering design, the KS test result can meet the stability analysis requirements, while for complex geotechnical engineering design, the SW test is used to test the normality of the design parameters to reduce the design uncertainty.

Key words: piezocone penetration test, geotechnical parameters, normality test, variance analysis

CLC Number: 

  • TU413
[1] Phoon K K. Modeling and Simulation of Stochastic Data[C]//Proceedings of GeoCongress. Reston:ASCE, 2006:1-17.
[2] Phoon K K, Ching J Y. Beyond Coefficient of Variation for Statistical Characterization of Geotechnical Parameters[C]//Proceedings of the 4th International Conference on Site Characterization 4.[S.l.]:Staff Publications, 2012:113-130.
[3] Phoon K K, Ching J Y. Multivariate Model for Soil Parameters Based on Johnson Distributions[C]//Foundation Engineering in the Face of Uncertainty.[S.l.]:Geotechnical Special Publication, 2013:337-353.
[4] Cao Z J, Wang Y. Bayesian Approach for Probabilistic Site Characterization Using Cone Penetration Tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2):267-276.
[5] Degroot D J, Baecher G B. Estimating Autocovariance of In-Situ Soil Properties[J]. Journal of Geotechnical Engineering, 1993, 119(1):147-166.
[6] Phoon K K, Kulhway F H, Grigoriu M D. Multiple Resistance Factor Design for Shallow Transmission Line Structure Foundation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(9):807-818.
[7] Razali N M, Wah Y B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests[J]. Journal of Statistical Modeling and Analytics, 2011, 2(1):21-33.
[8] Park H M. Univariate Analysis and Normality Test Using SAS, STATA, and SPSS[R]. Bloomington:Indiana University, 2008.
[9] 陈立宏, 陈祖煜, 刘金梅. 土体抗剪强度指标的概率分布类型研究[J]. 岩土力学, 2005, 26(1):37-45. Chen Lihong, Chen Zuyu, Liu Jinmei. Probability Distribution of Soil Strength[J]. Rock and Soil Mechanics, 2005, 26(1):37-45.
[10] 严春风, 陈洪凯, 张建辉. 岩石力学参数的概率分布的Bayes推断[J]. 重庆建筑大学学报, 1997, 19(2):65-71. Yan Chunfeng, Chen Hongkai, Zhang Jianhui. The Use of Bayesian Method to Infer Distribution of Mechanical Parameters[J]. Journal of Chongqing Jianzhu University, 1997, 19(2):65-71.
[11] 张继周, 缪林昌. 岩土参数概率分布类型及其选择标准[J]. 岩石力学与工程学报, 2009, 28(增刊2):3526-3532. Zhang Jizhou, Miao Linchang.Types and Selection Criteria of Probability Distribution of Rock and Soil Parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup.2):3526-3532.
[12] 章刚勇, 阮陆宁. 基于Monte Carlo随机模拟的几种正态性检验方法的比较[J]. 统计与决策, 2011(7):17-20. Zhang Gangyong, Ruan Luning. A Comparison on Several Tests for Normality by Monte Carlo Simulation[J]. Statistics and Decision, 2011(7):17-20.
[13] Cai G J, Liu S Y, Puppala A J. Comparison of Cpt Charts for Soil Classification Using PCPT Data:Example from Clay Deposits in Jiangsu Province, China[J]. Engineering Geology, 2011, 121:89-96.
[14] Fenton G. Random Field Modeling of CPT Data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(6):486-498.
[15] Phoon K K, Kulhawy F H. Characterization of Geotechnical Variability[J]. Canadian Geotechnical Journal, 1999, 36(4):612-624.
[16] Amundaray J I. Modeling Geotechnical Uncertainty by Bootstrap Resampling[D]. West Lafayette:Purdue University, 1994.
[17] Rethati L. Probabilistic Solutions in Geotechnics[M]. Budapest:Elsevier, 1988.
[18] Cornell J R, Benjamin C A. Probability, Statistics, and Decisions for Civil Engineers[M]. New York:McGraw-Hill, 1970.
[19] Montgomery D C, Runger G C, Hubele N F. Engineering Statistics[M]. New York:John Wiley & Sons, 2010.
[20] 闫澍旺, 朱红霞, 刘润. 关于随机场理论在土工可靠度计算中应用的研究[J]. 岩土工程学报, 2006, 28(12):2053-2059. Yan Shuwang, Zhu Hongxia, Liu Run. Study on Application of Random Field Theory to Reliability Analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12):2053-2059.
[21] 刘春原, 闫澍旺. 岩土参数随机场特性及线性预测[J]. 岩土工程学报, 2002, 24(5):588-591. Liu Chunyuan, Yan Shuwang. Characteristic of the Random Field of Geotechnical Parameters and Linear Prediction[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5):588-591.
[22] 冯波, 陈明涛, 岳冬冬, 等.基于两种插值算法的三维地质建模对比[J]. 吉林大学学报(地球科学版), 2019, 49(4):1200-1208. Feng Bo, Chen Mingtao, Yue Dongdong, et al. Comparison of 3D Geological Modeling Based on Two Different Interpolation Medthods[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(4):1200-1208.
[23] 郑天成, 侯卫生, 何思彤.基于二维地质剖面的三维地质结构多点统计学模拟方法[J]. 吉林大学学报(地球科学版), 2019, 49(5):1496-1506. Zheng Tiancheng, Hou Weisheng, He Sitong. An MPS-Based Simulation Algorithm for 3D Geological Structure with 2D Cross-Sections.[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5):1496-1506.
[1] Zhang Hu, Zhang Jianming, Su Kai, Liu Shiwei. In-Situ Pressuremeter Creep Test on High-Temperature and High Ice-Rich Permafrost [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1950-1957.
[2] WANG Wen-lu, ZHAO Da-jun, WANG Lei. Algorithm and Experimental of the Separated Foundation Bearing Capacity of Culverts Considering Lateral Fill [J]. J4, 2011, 41(3): 771-776.
[3] Zhang Hu, Zhang Jianming, Su Kai, Liu Shiwei. Comparison Between Pressuremeter Test and Uniaxial Compression Test of Frozen Soil [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1479-1484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[2] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[3] GUO Hong-jin, LI Yong, ZHONG Jian-hua, WANG Hai-qiao. Carbonate Reservoir Properties in Member 1 of Shahejie Formation of Paleogene in the Dongxin Oilfield, Shandong Province[J]. J4, 2006, 36(03): 351 -357 .
[4] DU Ye-bo,JI Han-cheng,ZHU Xiao-min. Research on the Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Western Sichuan Foreland Basin[J]. J4, 2006, 36(03): 358 -364 .
[5] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .
[6] SU Ji-jun, YIN Kun, GUO Tong-tong. Optimization of the JointThread of Diamond WireLine Coring Drill Pipe[J]. J4, 2005, 35(05): 677 -680 .
[7] TANG Jian-sheng, XIA Ri-yuan, ZOU Sheng-zhang, LIANG Bin. Characteristics of Karst Medium System and Its Hydrogeologic Effect in the South Tianshan, Xinjiang[J]. J4, 2005, 35(04): 481 -0486 .
[8] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method[J]. J4, 2005, 35(04): 515 -0519 .
[9] DU Chun-guo, ZOU Hua-yao, SHAO Zhen-jun,ZHANG Jun. Formation Mechanism and Mode of Sand Lens Reservoirs[J]. J4, 2006, 36(03): 370 -376 .
[10] XU Sheng-wei,WANG Ming-chang,BAI Ya-hui,ZHANG Xue-ming. A Study and Implementation of the Distributed Publication Service of Massive Imagery Data Based on J2EE[J]. J4, 2006, 36(03): 491 -496 .