Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (6): 1740-1752.doi: 10.13278/j.cnki.jjuese.20210027

Previous Articles     Next Articles

Geochemical Characteristics and Geological Significance of Cobalt in Cobalt-Rich Sulfide of Hongge V-Ti Magnetite Ore Field, Panxi

Zhang Guishan1,2, Qiu Hongxin1, Wen Hanjie1,3, Peng Ren1, Meng Qiankun1   

  1. 1. School of Earth Science and Resources, Chang'an University, Xi'an 710065, China;
    2. Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, Ministry of Natural Resources, Xi'an 710065, China;
    3. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
  • Received:2021-01-24 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Natural Science Foundation of China (41073027),the Projects of Foundatental Research Funds of the Central Universities (310827172003), the Natural Science Foundation of Shaanxi Province,China (2019-JM-161) and the Comprehensive Research Project on Emerging Key Mineral Resources of Caitong Mine (030216190040)

Abstract: Cobalt rich sulfide minerals are developed in Baicao mining area of Hongge ore field in Panxi. The research on their genesis and formation environment is relatively weak. In this paper, the mineralogy and mineral chemistry are used for a systematic study. The results show that the main cobalt-rich sulfides in the ore are pyrrhotite, pyrite, pentlandite, and siegenite. The average contents of Co and Ni in pyrrhotite are 0.21% and 0.42% respectively, and the average value of Co/Ni is 1.10; The average contents of Co and Ni in pyrite are 0.18% and 0.29% respectively, and the average value of Co/Ni is 0.77; The average contents of Co and Ni in pentlandite are 2.67% and 34.30% respectively, and the average value of Ni/Fe,S/Fe and M/S# are 1.08,1.91 and 1.13 respectively; The average contents of Co and Ni in siegenite are 24.30% and 22.90% respectively, and the average value of Co/Ni is 1.06. According to the pyrrhotite-pyrite mineral thermometer, the crystallization temperature of the Baicao cobalt rich sulfide is about 267-490℃, which indicates that it was formed at medium high temperature. Compared with the characteristic values of S/Fe and M/S# of the mantle xenolith pentlandite, the pyrrhotite has the characteristics of troilite (Tr) homomorphic polycrystal, which reflects that the ore-forming materials were derived from the mantle. The geochemical characteristics of cobalt in Baicao mining area show that in the process of sulfide melt separation, cobalt migrated to mono-sulfide solid solution to form Po-Py solid solution, and then migrated further to form Pn and Se solid solution, forming the phenomenon that the content of Co in Se, Pn, Po-Py and Ccp decreases gradually.

Key words: cobalt-rich sulfide, cobalt, EPMA, geochemistry, Baicao mining area, Hongge V-Ti magnetite ore field

CLC Number: 

  • P571
[1] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京:科学出版社, 1984:101-112. Liu Yingjun, Cao Liming, Li Zhaolin, et al. Geochemistry of Eelement[M]. Beijing:Science Press, 1984:101-112.
[2] 宋谢炎, 陈列锰, 于宋月, 等. 峨眉大火成岩省钒钛磁铁矿矿床地质特征及成因[J]. 矿物岩石地球化学通报, 2018, 37(6):1003-1018. Song Xieyan, Chen Liemeng, Yu Songyue, et al. Geological Features and Genesis of the V-Ti Magenetite Deposits in the Emeishan Large Igneous Province, SW China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(6):1003-1018.
[3] Wang D C, Hou T, Wang M, et al. New Constraints on the Open Magma Chamber Processes in the Formation of Giant Hongge Fe-Ti-V Oxide Deposit[J]. Lithos, 2020. doi:10.1016/j.lithos.2020.105704.
[4] Lu Y G, Lesher C M, Deng J. Geochemistry and Genesis of Magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) Deposits in China[J]. Ore Geology Reviews, 2019, 107:863-887.
[5] Liang Q L, Song X Y, Wirth R, et al. Implications of Nano-and Micrometer-Size Platinum-Group Element Minerals in Base Metal Sulfides of the Yangliuping Ni-Cu-PGE Sulfide Deposit, SW China[J]. Chemical Geology, 2019, 517:7-21.
[6] Ding X, Ripley E M, Wang W Z, et al. Iron Isotope Fractionation During Sulfide Liquid Segregation and Crystallization at the Lengshuiqing Ni-Cu Magmatic Sulfide Deposit, SW China[J]. Geochimica et Cosmochimica Acta, 2019, 261:327-341.
[7] Tang Q Y, Li C, Ripley E M, et al. Sr-Nd-Hf-O Isotope Constraints on Crustal Contamination and Mantle Source Variation of Three Fe-Ti-V Oxide Ore Deposits in the Emeishan Large Igneous Province[J]. Geochimica et Cosmochimica Acta, 2021, 292:364-381.
[8] Xiong Y Q, Shao Y Q, Jiang S Y, et al. Distal Relationship of the Taihexian Pb-Zn-(Au) Deposit to the Dengfuxian Magmatic-Hydrothermal System, South China:Constraints from Mineralogy, Fluid Inclusion, H-O-Pb and in Situ S Isotopes[J]. Ore Geology Reviews, 2020, 127:103826.
[9] Wang K, Dong H, Liu R. Genesis of Giant Fe-Ti Oxide Deposits in the Panxi Region, SW China:A Review[J]. Geological Journal, 2019.doi:10.1002/gj.3632.
[10] Wang Y J, Zhu W G, Zhong H, et al. Using Trace Elements of Magnetite to Constrain the Origin of the Pingchuan Hydrothermal Low-Ti Magnetite Deposit in the Panxi Area, SW China[J]. Acta Geochimica, 2019, 38:376-390.
[11] Liu P P, Zhou M F, Wei T C, et al. In-Situ LA-ICP-MS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-Bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province, SW China[J]. Ore Geology Reviews, 2015, 65(4):853-871.
[12] Wei C, Ye L, Hu Y S, et al. LA-ICP-MS Analyses of Trace Elements in Base Metal Sulfides from Carbonate-Hosted Zn-Pb Deposits, South China:A Case Study of the Maoping Deposit[J]. Ore Geology Reviews, 2021, 130(2):103945.
[13] Zhang Z Z, Qin J F, Lai S C, et al. Origin of Late Permian Syenite and Gabbro from the Panxi Rift, SW China:The Fractionation Process of Mafic Magma in the Inner Zone of the Emeishan Mantle Plume[J]. Lithos, 2019, 346/347:105160.
[14] 曹永华. 攀枝花层状岩体岩浆演化及钒钛磁铁矿矿床的成因研究[D]. 广州:中国科学院广州地球化学研究所, 2019:1-26. Cao Yonghua. Magmatic Processes of the Panzhihua Layered Intrusion and Associated Fe-Ti-(V) Oxide Ore Deposit[D]. Guangzhou:Guangzhou Institute of Geochemistry Chinese Academy of Sciences, 2019:1-26.
[15] Desborough G A, Carpenter R H. Phase Relations of Pyrrhotite[J]. Economic Geology, 1965, 60(7):1431-1450.
[16] Mansur E T, Barnes S J, Duran C J. An Overview of Chalcophile Element Contents of Pyrrhotite, Pentlandite, Chalcopyrite, and Pyrite from Magmatic Ni-Cu-PGE Sulfide Deposits[J]. Mineralium Deposita, 2020,56:179-204.
[17] 张斌, 张革利, 陈浩,等. 陕西凤县二里河铅锌矿床金属硫化物标型特征及地质意义[J]. 世界地质, 2021, 40(2):265-272. Zhang Bin, Zhang Geli, Chen Hao, et al. Typomorphic Characteristics and Geological Signifit Cance of Metal Sulfide from Erlihe Pb-Zn Deposit in Fengxian County, Shaanxi Province[J]. Global Geology, 2021, 40(2):265-272.
[18] 杨阳, 唐菊兴, 吴纯能, 等. 西藏甲玛铜多金属矿床磁黄铁矿标型矿物学特征及其地质意义[J]. 矿床地质, 2020, 39(2):337-350. Yang Yang, Tang Juxing, Wu Chunneng, et al. Typomorphic Mineralogical Characteristics of Pyrrhotite in Jiama Cu Polymetallic Deposit, Tibet, and Its Geological Significance[J].Mineral Deposits, 2020, 39(2):337-350.
[19] 陈殿芬. 我国一些铜镍硫化物矿床主要金属矿物的特征[J]. 岩石矿物学杂志, 1995, 14(4):345-354. Chen Dianfen. Characteristics of Main Metallic Minerals in Some Copper-Nickel Sulfide Deposits of China[J]. Acta Petrologica et Mineralogica, 1995, 14(4):345-354.
[20] 吕林素, 李宏博, 周振华, 等. 吉林红旗岭富家矿床矿石矿物化学和硫同位素特征:对铜镍硫化物矿床成因及成矿过程的约束[J]. 地球学报, 2017, 38(2):193-207. Lü Linsu, Li Hongbo, Zhou Zhenhua, et al. Mineral Chemistry and Sulfur Isotopic Characteristics of Ores from the Fujia Deposit in Hongqiling Area, Jilin Province:Constraints on the Genesis and Ore-forming Processes of Ni-Cu Sulfide Deposit[J]. Acta Geoscientica Sinica, 2017, 38(2):193-207.
[21] Nekrasov I J, Besmen N I. Pyrite-Pyrrhotite Geothermometer. Distribution of Cobalt, Nickel and Tin[J]. Physics and Chemistry of the Earth, 1979, 11:767-771.
[22] 王玉往, 王京彬, 王莉娟,等. 岩浆铜镍矿与钒钛磁铁矿的过渡类型:新疆哈密香山西矿床[J]. 地质学报, 2006, 80(1):61-73. Wang Yuwang, Wang Jingbin, Wang Lijuan, et al. A Intermediate Type of Cu-Ni Sulfide and V-Ti Magnetite Deposit:Xiangshanxi Deposit,Hami, Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(1):61-73.
[23] 徐国风, 邵洁涟. 黄铁矿的标型特征及其实际意义[J]. 地质论评, 1980, 26(6):541-546. Xü Guofeng, Shao Jielian. The Typomorphic Characteristics of Pyrite and Its Significance[J]. Geological Review, 1980, 26(6):541-546.
[24] 王汾连, 赵太平, 陈伟, 等. 峨眉山大火成岩省赋Nb-Ta-Zr矿化正长岩脉的形成时代和锆石Hf同位素组成[J]. 岩石学报, 2013, 29(10):3519-3532. Wang Fenlian, Zhao Taiping, Chen Wei, et al. Zircon U-Pb Ages and Lu-Hf Isotopic Compositions of the Nb-Ta-Zr-Bearing Syenitic Dikes in the Emeishan Large Igneous Province[J]. Acta Petrologica Sinica, 2013, 29(10):3519-3532.
[25] 范思文, 樊金虎, 孙立秋,等. 内蒙古特尼格尔图矽卡岩型铅锌矿床地质特征及矿床成因[J]. 世界地质, 2020, 39(4):826-837. Fan Siwen, Fan Jinhu, Sun Liqiu, et al. Geological Characteristics and Genesis of Tenige'ertu Lead-Zinc Deposit, Inner Mongolia[J]. Global Geology, 2020, 39(4):826-837.
[26] 骆华宝. 中国主要硫化铜镍及其成因研究[D]. 北京:中国地质科学院矿床研究所, 1990:43-65. Luo Huabao. The Major Nickel-Copper Sulfide Deposits and Their Genesis of China[D]. Beijing:Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 1990:43-65.
[27] 顾连新, B. 康伯尔. 不同成因类型磁黄铁矿中镍、钴的地球化学[J]. 地质与勘探, 1974, 10(3):65-71. Gu Lianxin, Kangboer B. Co and Ni Geochemistry of Different Genetic Pyrrhotite[J]. Geology and Prospecting, 1974, 10(3):65-71.
[28] 黄式庭, 于晓飞, 吕志成, 等. 甘肃北山老金厂金矿床载金矿物特征、原位硫同位素组成及其对成矿的指示意义[J]. 吉林大学学报(地球科学版), 2020, 50(5):1387-1403. Huang Shiting, Yu Xiaofei, Lü Zhicheng, et al. Characteristics of Gold-Bearing Minerals and Compositions of In-Situ Sulfur of Laojinchang Gold Deposit in Beishan, Gansu Province and Its Ore-Forming Implications[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5):1387-1403.
[29] 李洪梁, 李光明, 丁俊,等. 藏南扎西康铅锌多金属矿床成因:硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5):1289-1303. Li Hongliang, Li Guangming, Ding Jun, et al. Genesis of Zhaxikang Pb-Zn Polymetallic Deposit in Southern Tibet:Evidencefrom in Situ S Isotopes of Sulfides[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(5):1289-1303.
[30] 宋谢炎. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 2019, 38(4):699-710. Song Xieyan. Current Research Status and Important Issues of Magmatic Sulfide Deposits[J].Mineral Deposits, 2019, 38(4):699-710.
[31] 王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33):3825-3838. Wang Yan, Zhong Hong, Cao Yonghua, et al. Genetic Classification, Distribution and Ore Genesis of Major PGE, Co and Cr Deposits in China:A Critical Review[J]. Chinese Science Bulletin, 2020, 65(33):3825-3838.
[32] 宋谢炎, 肖家飞, 朱丹, 等. 岩浆通道系统与岩浆硫化物成矿研究新进展[J]. 地学前缘, 2010, 17(1):153-163. Song Xieyan, Xiao Jiafei, Zhu Dan, et al. New Insights on the Formation of Magmatic Sulfide Deposits in Magma Conduit System[J]. Earth Science Frontiers, 2010, 17(1):153-163.
[33] 暴宏天, 王焰, 曹勇华. 新疆北山地区坡一岩体橄榄石成分特征及其对地幔源区的制约[J]. 地球化学, 2020, 49(4):353-367. Bao Hongtian, Wang Yan, Cao Yonghua. Compositions of the Olivine From the Poyi Ultramafic Intrusion in the Beishan Area, Xinjiang:Constraints on the Nature of Its Mantle Source[J]. Geochimica, 2020, 49(4):353-367.
[34] 张腾蛟, 李佑国, 张月姣, 等. 川西盐边县红格钒钛磁铁矿中镍钴硫化物的铂族元素地球化学特征[J]. 地质论评, 2017, 63(4):1050-1063. Zhang Tengjiao, Li Youguo, Zhang Yuejiao, et al. PGE Geochemical Characteristics of Massive Sulfide in V-Ti Magnetite at Hongge Area,Yanbian County, Western Sichuan[J]. Geological Review, 2017, 63(4):1050-1063.
[35] 张月姣. 四川红格钒钛磁铁矿矿床铂族元素地球化学研究[D]. 成都:成都理工大学, 2014:5-18. Zhang Yuejiao. The Platinum-Group Elements Geochemical Characteristecs of Vanadiumtitano-Magnetite Deposits in Hongge, Sichuan[D]. Chengdu:Chengdu University of Technology, 2014:5-18.
[36] Sarah A S, Barnes S J, Prichard H M. The Distribution of Platinum Group Elements(PGE) and Other Chalcophile Elements Among Sulfides from the Creighton Ni-Cu-PGE Sulfide Deposit, Sudbury, Canada, and the Origin of Palladium in Pentlandite[J]. Mineralium Deposita, 2010, 45:765-793.
[37] Barnes S J, Achterbergh E V, Makovicky E, et al. Proton Probe Results for Partitioning of Platinum Group Elements Between Monosulphide Solid Solution and Sulphide Liquid[J]. South African Journal of Geology, 2001, 104(4):275-286.
[38] Clifford P, Sarah J B, Edmond A M. Textural Variations in MORB Sulfide Droplets Due to Differences in Crystallization History[J]. Canadian Mineralogist, 2012, 50:675-692.
[1] Gong Yundi, Li Bile, Li Zhihua, Yu Runtao, Sun Yonggang, Zhang Sen. Petrogenesis and Geological Significance of Granite Porphyry Dike from Xiaokelehe in North Da Hinggan Mountains: Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotopic Composition [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1753-1769.
[2] Zhang Qidao, Liu Zhennan, Yin Linhu. Chemical Characteristics and Genesis of Geothermal Fluid in Deep Metamorphic Rock Area: A Case of Hot Springs in Longchuan Basin, Western Yunnan [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1838-1852.
[3] Shi Dongyan, Zhang Kun, Zhang Yupeng, Gao Yong, Tang Wei, Lü Mingqi. Geophysical and Geochemical Characteristics and Prospecting Criteria of Shallow Overburden Area in Heilongjiang Province: A Case Study of 340 Highland Gold Mineralization in Heihe City [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1042-1053.
[4] Zhao Yue, Liu Jingdang, Zhang Guobin, Zhang Yanfei. Geochronology,Geochemistry and Tectonic Significance of the Monzonitic Granites of Maoershan Pluton from the Southern Zhangguangcai Range in Heilongjiang Province, China [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1098-1118.
[5] Yang Yuanjiang, Deng Changzhou, Li Chenglu, Zhang Li, Gao Yongzhi, Yu Xihuan. Geochronology,Geochemistry and Genesis of Igneous Rocks Associated with Dayangshan Mo Deposit in Great Xing'an Range [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1064-1081.
[6] Sun Chao, Gou Jun, Sun Deyou, Feng Zhao, Tian Li. Petrogenesis and Tectonic Implication of Late Paleozoic I-A Type Granites in the Northwest Heilongjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1082-1097.
[7] Zhang Xue, Weng Kai, Zhao Xiaojian, Du Shouli, Shang Ying. Permian Volcanic Rocks in Kalatage Area, Eastern Tianshan, Xinjiang: Petrogenesis and Tectonic Implications [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1119-1138.
[8] Shi Jizhong, Niu Yazhuo, Xu Wei, Song Bo, Wang Baowen. Geochemical Characteristics and Sedimentary Environment of Carboniferous Baishan Formation Carbonate in Shibanquanxi of Yingen-Ejin Banner Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 680-693.
[9] Zeng Zhijie, Chen Lei. Geochemistry of Trace and Platinum Group Elements of Xiajiadian Gold Deposit in Shanyang-Zhashui Ore Concentration Area in South Qinling: Implications of Ore Genesis [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 704-722.
[10] Zhang Chao, Shi Shaoshan, Shi Yi, Wei Minghui, Yang Fan, Huan Hengfei, Li Wenbo, Wang Luyuan. Tectonic Evolution of Northern Margin of Eastern North China Craton: Evidences of Middle Triassic Plutons in Faku Area, Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 734-748.
[11] Tian Mengyu, Di Yongjun, Wang Shuai, Jia Yilong. Geochronology, Geochemical Characteristics and Genesis of Napeng Granite Biotite Monzogranite in Yunkai Area, Guangxi [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 749-766.
[12] Deng Hongbin, Li Peilong, Wei Huacai, He Wenjin, Yang Pengtao, Li Ning, Tang Hua. Petro-Geochemical Characteristics and Geological Significance of Dishantou Granite Body in East Kunlun Orogenic Belt [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 767-782.
[13] Tian Xingwang, Luo Bing, Sun Yiting, Liu Ran, Li Ya, Chen Yangui, Zhou Chunlin, Wang Hua, Li Yading, Wang Wei, Wang Yunlong, Yang Dailin. Natural Gas Characteristics and Source Analysis of Permian Volcanic Gas Reservoir: A Case Study of Well YT1 in Chengdu-Jianyang Area, Sichuan Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 325-335.
[14] Qin Xiaofeng, Zhang Cheng, Wang Zongqi, Ma Shouxian, Gong Jianghua, Feng Yi, Cui Anmin, Li Dong. Geochronology,Geochemistry and Geological Significance of the Latest Intrusive Rocks in Pingying Granite Pluton from Baotan Tin Polymetallic Metallogenic Area, Northern Guangxi [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 380-399.
[15] Yang Aixue, Sun Deyou, Hou Xuegang, Wang Jiuliang, Zhang Jilin, Li Linwei. Geochemical Characteristics and Geological Significance of Diorite of Yu'erya Gold Deposit Area in Eastern Hebei Province [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 416-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .