J4 ›› 2011, Vol. 41 ›› Issue (5): 1638-1645.

Previous Articles     Next Articles

Analysis to the Lahars Extent in Changbai Mountains by Numerical Simulation

WAN Yuan, XU Jian-dong, LIN Xu-dong, PAN Bo   

  1. Institute of Geology, China Earthquake Administration, Beijing100029, China
  • Received:2010-10-11 Online:2011-09-26 Published:2011-09-26

Abstract:

The core model of LAHARZ is a semi-empirical numerical model based on the hydrodynamics model and combination with the analysis on the lahars of nine volcanoes. The lahars in four high easy-happening rivers, Erdaobai River, Songhua River, Yalu River and Tumen River, are simulated by the LAHARZ based on the 1∶250000 digital elevation model. The threshold of the energy cone is set to 0.07 according to historical plume height and the average slope. By comparing and matching the simulated river with the real river, the river threshold value is determined to be 5 000. And the volume thresholds are defined as 108m3, 109m3, 1010m3,and 1011m3 by their historical lahar volumes. The simulated results show that the flow distance and the damage scale were influenced by the different thresholds, which is similar with the historical lahars’ extent. The damage grades are divided into four levels as 40 km, 70 km, 80 km and 100 km. It is important for the planning and construction in the Changbai Mountain area. In addition, this disaster zoning model and method can be used to be the reference of other volcanoes.

Key words: Changbai Mountains, numerical simulation, lahar, LAHARZ, energy cone

CLC Number: 

  • P642.23
[1] Ruan Dawei, Li Shunda, Bi Yaqiang, Liu Xingyu, Chen Xuhu, Wang Xingyuan, Wang Keyong. Ore-Controlling Structures and Deep Metallogenic Prediction of Aerhada Pb-Zn Deposit in Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1705-1716.
[2] Tan Jiahua, Lei Hongwu. Three Dimension Model Construction for TOUGH2 Based on GMS and Comparison of Simulations [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1229-1235.
[3] Yin Songyu, Zhao Dajun, Zhou Yu, Zhao Bo. Numerical Simulation and Experiment of the Damage Process of Heterogeneous Rock Under Ultrasonic Vibration [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 526-533.
[4] JiangYanjiao, Sun Jianmeng, Gao Jianshen, Shao Weizhi, Chi Xiurong, Chai Xiyuan. Numerical Simulation of Mud Invasion Around the Borehole in Low Permeability Reservoir and a Method for Array Induction Log Resistivity Correction [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 265-278.
[5] Zhu Chuanhua, Wang Weifeng, Wang Qingzhen, Li Yukun. Numerical Simulation of Structural Strain for Turbidite Sands Reservoirs of Low Permeability [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1580-1588.
[6] Wang Changming, Chang Gaoqi, Wu Qian, Li Wentao. Pile-Soil Interaction Mechanism and a Method to Determine Vertical Bearing Capacity of Prestressed Concrete Pipe Pile [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 805-813.
[7] Qian Wenjian, Shang Yuequan, Du Lili, Zhu Senjun. Influences of Inflatable Location and Pressure on Draining of Slopes [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 536-542.
[8] Yu Peng, Ma Teng, Tang Zhonghua, Zhou Wei. Feasibility of Oilfield Wastewater Disposal in the Underpressure System of Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 211-219.
[9] Li Zhengwei, Zhang Yanjun, Guo Liangliang, Jin Xianpeng. Prediction of Hydrothermal Production from Hot Dry Rock Development in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1189-1197.
[10] Shu Longcang, Fan Jianhui, Lu Chengpeng, Zhang Chunyan, Tang Ran. Hydrogeological Simulation Test of Fissure-Conduit Media in Springs Watershed [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 908-917.
[11] Yang Lichun, Pang Yubin, Li Shengang. Research on Construction Spatial Effects in Long Foundation Pit [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 541-545.
[12] Lei Hongwu, Li Jiaqi, Xu Tianfu, Wang Fugang. Numerical Simulation of Coupled Thermal-Hydrodynamic-Mechanical (THM) Processes for CO2 Geological Sequestration in Deep Saline Aquifers at Ordos Basin, China [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 552-563.
[13] Lei Hongwu, Jin Guangrong, Li Jiaqi, Shi Yan, Feng Bo. Coupled Thermal-Hydrodynamic Processes for Geothermal Energy Exploitation in Enhanced Geothermal System at Songliao Basin, China [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1633-1646.
[14] Chen Xingxian, Luo Zujiang, An Xiaoyu, Tan Jinzhong, Tian Kaiyang. Coupling Model of Groundwater Three Dimensional Variable-Parametric Non-Steady Seepage and Land-Subsidence [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1572-1578.
[15] Wang Hongde,Gao Youlong,Xue Xingqiao,Jin Xiaohao,Wang Gang. Optimal Placement of Monitoring Points at Typical Landslide [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 858-866.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!