吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 344-348.

Previous Articles     Next Articles

Three-point bending properties of Zn-22Al foam sandwich panel

LIU Jia-an1,2, YU Si-rong1,2, ZHU Xian-yong3   

  1. 1. College of Materials Science and Engineering, Jilin University, Changchun 130022, China;
    2. Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130022, China;
    3. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2011-01-16 Online:2012-03-01 Published:2012-03-01

Abstract: The sandwich panel were fabricated using Zn-22Al matrix foam as the core material and the LY12 aluminum panel as the shell. The bending behavior of the sandwich panel was studied by three-point bending test. The failure mode of the sandwich panel was observed and the influencing factors were analyzed. Applying the stiffness optimization theory of sandwich panels, the deformation mechanism of the sandwich panels was discussed. The results showed that the bending curves of the sandwich panel can be divided into three regions, including the linear deformation region, the non-linear deformation region and the unsteady region. The ultimate load of the sandwich panel decreases when the porosity of the foam is rising. The sandwich panel shows a favorable cooperative effect on mechanical property. The primary failure mode of the sandwich panel is the core shearing.

Key words: composite material, foam sandwich panel, three-point bending test, Zinc-aluminum alloy

CLC Number: 

  • TB331
[1] Yu J L, Wang X, Wei Z G, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with Aluminum-foam core[J]. International Journal of Impact Engineering, 2003, 283: 331-347.

[2] 尚金堂, 何德坪. 泡沫铝层合梁的三点弯曲变形[J]. 材料研究学报, 2003, 17(1):31-38. Shang Jin-tang, He De-ping. Deformation of sandwich beams with Al foam cores in three-point bending[J]. Chinese Journal of Materials Research, 2003, 17(1): 31-38.

[3] 张敏,祖国胤,姚广春. 新型泡沫铝三明治板的弯曲性能[J]. 过程工程学报,2007,7:628-631. Zhang Min, Zu Guo-yin, Yao Guang-chun. Bending properties of novel Aluminum foam sandwich panels[J]. The Chinese Journal of Process Engineering, 2007, 7: 628-631.

[4] Chen C, Harte A M, Fleck N A. The plastic collapse of sandwich beams with a metallic foam core[J]. International Journal of Mechanical Sciences, 2001, 43(6): 1483-1506.

[5] Sha J,Yip T. In situ surface displacement analysis on sandwich and multilayer beams composed of Aluminum foam core and metallic face sheets under bending loading[J]. Materials Science & Engineering A, 2004, 386: 91-103.

[6] 查海波,凤仪,朱琪琪, 等. 泡沫铝层合梁的弯曲性能[J]. 中国有色金属学报,2007,17:290-295. Zha Hai-bo, Feng Yi, Zhu Qi-qi, et al. Bending capability of foam Aluminum sandwich beams[J]. The Chinese Journal of Nonferrous Metals, 2007, 17: 290-295.

[7] Mccormack T M, Miller R, Kesler O, et al. Failure of sandwich beams with metallic foam cores[J]. International Journal of Solids and Structures, 2001, 38(29): 4901-4920.

[8] Allen H G. Analysis and Design of Structural Sandwich Panels[M]. Oxford:Pergamon Press, 1969.

[9] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. Cambridge: Cambridge University Press, 1997.

[10] Kitazono K, Takiguchi Y. Strain rate sensitivity and energy absorption of Zn-22Al foams[J]. Scripta Materialia, 2006, 55: 501-504.

[11] Daoud A. Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting[J]. Materials Science and Engineering A, 2008, 488: 281-295.

[12] Yu Si-rong, Liu Jia-an, Luo Yan-ru, et al. Compressive behavior and damping property of ZA22/SiCp composite foams[J]. Materials Science and Engineering A, 2007, 457(1/2): 325-328.
[1] HU Zhi-qing, ZHENG Hui-hui, XU Ya-nan, ZHANG Chun-ling, DANG Ting-ting. Effect of Al surface with micro/macro grooves on Al/CFRP adhesive-bonded joints [J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[2] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[3] YANG Yue, LI Xue, XU Xiao-dan. Microstructure and properties of sintered Ti-B-C-N power [J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
[4] GUAN Qing-feng, HUANG Wei, LI Huai-fu, GONG Xiao-hua, ZHANG Cong-lin, LYU Peng. Diffusion alloying of Cu-C induced by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[5] PENG Ai-dong, LIU He-nan. Preparation and fluorescent properties of cubic perylene nanoparticles based on oil-in-water microemulsion method [J]. 吉林大学学报(工学版), 2016, 46(5): 1583-1586.
[6] LIU Li-ping, LIU Yong-bing, JI Lian-feng, CAO Zhan-yi, YANG Xiao-hong. Flow stress behavior of in situ particulate reinforced titanium atrix composite at elevated temperature [J]. 吉林大学学报(工学版), 2016, 46(4): 1197-1201.
[7] YAN Guang, HAN Xiao-jin, YAN Chu-liang,ZHU Lian-qing. Buckling analysis of composite cylindrical shell with cover under axial compressive load [J]. 吉林大学学报(工学版), 2015, 45(1): 187-192.
[8] MA Li, ZHOU Ling, HE Hui, LUO Yuan-fang, JIA De-min. Effect on properties of bamboo / ABS composites by high-temperature cooking of bamboo [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 205-209.
[9] LU Guang-lin, QIU Xiao-ming, BAI Yang, LUN Xin-jie|DENG Bao-qing,REN Lu-qu. Microstructure and performance of c-BN bionic wearresistant composites [J]. 吉林大学学报(工学版), 2011, 41(01): 73-0077.
[10] DAI Han-Da, QU Jian-Jun, ZHUANG Qian-Xin. Influence of molding press on mechanical properties of CF+G/PEEK composite material [J]. 吉林大学学报(工学版), 2010, 40(02): 457-0460.
[11] LI Jun-chen, LI Xu-dong, SHENG Jie. Visualized simulation of heterogeneous 3D material microstructure [J]. 吉林大学学报(工学版), 2010, 40(01): 92-0097.
[12] PENG Chun-jia, WEI Chang-ping, ZHU Cui-mei, XU Jie, SUN Xiao-fei . Photoluminescence properties of new organic/inorganic
composite material Eu(aspirin)3phen-MCM-41
[J]. 吉林大学学报(工学版), 2009, 39(02): 358-0361.
[13] LI Tie-long, SUN Li-li, JIN Zhao-hui, KANG Hai-yan, LIU Bing-jing, WANG Dan . Nitrate reduction in water by ironsystem bimetallic nanoparticles [J]. 吉林大学学报(工学版), 2009, 39(02): 362-0367.
[14] LIU Xiu-qi1,2,XING He-qin3,ZHANG Guo1,2,WANG Li-yan4,JIN Jing1,2 . Oil absorption properties of foaming waste dusty slag/EPDM composites for machine oil [J]. 吉林大学学报(工学版), 2009, 39(01): 56-60.
[15] Hu Hai-xia Yu Si-rong, Liu Zhao-zheng, Li Song . Tribological behavior of SEBS-g-MA rubber particles
and organoclay reinforced PA66 Composite
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 90-0093.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!