Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1339-1344.doi: 10.13229/j.cnki.jdxbgxb20181268

Previous Articles    

Improved chicken swarm optimization algorithm

Bin LI1(),Guo⁃jun SHEN2,Geng SUN2,3(),Ting⁃ting ZHENG2   

  1. 1. College of Mathematics, Jilin University, Changchun 130012, China
    2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
    3. College of Communication Engineering, Jilin University, Changchun 130012, China
  • Received:2018-08-12 Online:2019-07-01 Published:2019-07-16
  • Contact: Geng SUN E-mail:lb@jlu.edu.cn;sungeng@jlu.edu.cn

Abstract:

Based on the hierarchy mechanism of the conventional chicken swarm optimization (CSO) algorithm, an improved chicken swarm optimization (ICSO) algorithm is proposed to enhance the solution accuracy and the convergence rate of the conventional CSO algorithm. The ICSO algorithm introduces several improved factors that learned from the grey wolf optimizer (GWO) and the particle swarm optimization (PSO), to extend the searching ability of the algorithm. Moreover, a duplicate remove operator is also introduced to improve the diversity of the population. Experimental results show that the accuracy of the solution and the convergence rate of the proposed algorithm are better than other benchmark algorithms.

Key words: computer applications, chicken swarm optimization(CSO) algorithm, convergence rate, function optimization

CLC Number: 

  • TP301

Fig.1

Flow chart of proposed ICSO algorithm"

Table 1

Results of testing benchmark functions"

函数ICSO算法FA算法CSO算法PSO算法BBO算法
最优总数21117179
f15.55e+04 ± 4.75e+041.78e+03 ± 1.12e+042.91e+06 ± 2.44e+062.18e+03 ± 1.93e+042.60e+05 ± 2.26e+06
f21.08e+03 ± 2.71e+022.96e+02 ± 2.23e+031.25e+07 ± 7.15e+071.26e+03 ± 4.20e+025.02E+03 ± 1.09e+05
f37.71e+02 + 2.86e+023.00e+02 ± 3.21e-041.45e+03 ± 6.71e+023.00e+02 ± 5.75e-031.01e+04 ± 3.39e+03
f44.00e+02 ± 1.88e-014.35e+02 ± 8.24e+004.41e+02 ± 8.99e+004.00e+02 ± 1.70e+014.35e+02 ±1.16e+01
f55.19e+02 ± 5.97e+005.20e+02 ± 2.80e+005.20e+02 ± 3.47e+005.20e+02 ± 5.48e+005.20e+02 ± 7.66e-02
f66.00e+02 ± 1.24e+006.00e+02 ± 2.23e-026.05e+02 ± 8.97e-016.00e+02 ± 9.31e-016.02e+02 ± 1.19e+00
f77.00e+02 ± 1.00e-027.00e+02 ± 4.89e-027.07e+02 ± 2.21e+007.00e+02 ± 3.53e-027.00e+02 ± 1.14e-01
f88.03e+02 ± 3.77e+008.11e+02 ± 3.07e+008.12e+02 ± 3.27e+008.00e+02 ± 1.61e-148.01e+02 ± 1.20e+00
f99.06e+02 ± 4.06e+009.07e+02 ± 3.23e+009.12e+02 ± 3.43e+009.07e+02 ± 1.71e+009.14e+02 ± 4.69e+00
f101.06e+03 ± 2.36e+021.24e+03 ± 1.68e+021.26e+03 ± 8.50e+011.13e+03 ± 6.20e+011.03e+03 ± 1.18e+01
f111.46e+03 ± 2.01e+021.69e+03 ± 1.68e+021.66e+03 ± 1.72e+021.48e+03 ± 1.29e+022.02e+03 ± 2.10e+02
f121.20e+03 ± 3.14e-021.20e+03 ± 6.00e-031.20e+03 ± 1.17e-011.20e+03 ± 5.62e-021.20e+03 ± 2.40e-01
f131.30e+03 ± 6.97e-021.30e+03 ± 1.91e-021.30e+03 ± 8.45e-021.30e+03 ± 4.53e-021.30e+03 ± 9.47e-02
f141.40e+03 ± 7.79e-021.40e+03 ± 3.86e-021.40e+03 ± 1.63e-011.40e+03 ± 2.26e-021.40e+03 ± 7.76e-02
f151.50e+03 ± 1.81e-011.50e+03 ± 1.48e-011.50e+03 ± 4.48e-011.50e+03 ± 2.38e-011.50e+03 ± 5.68e-01
f161.60e+03 ± 3.18e-011.60e+03 ± 4.33e-011.60e+03 ± 3.30e-011.60e+03 ± 5.77e-011.60e+03 ± 4.10e-01
f172.16e+03 ± 2.47e+022.45e+03 ± 3.62e+023.87e+03 ± 2.80e+033.89e+03 ± 1.23e+031.21e+04 ± 3.07e+05
f181.91e+03 ± 6.00e+016.54e+03 ± 3.13e+008.68e+03 ± 2.71e+032.43e+03 ± 3.90e+034.02e+03 ± 5.01e+04
f191.90e+03 ± 3.48e-011.90e+03 ± 6.41e-011.90e+03 ± 8.40e-011.90e+03 ± 6.95e-011.90e+03 ± 4.52e-01
f202.10e+03 ± 6.34e+012.02e+03 ± 2.25e+012.07e+03 ± 1.42e+032.01e+03 ± 2.09e+002.56e+04 ± 2.78e+04
f212.36e+03 ± 6.19e+002.55e+03 ± 2.10e+022.37e+03 ± 7.96e+022.22e+03 ± 5.13e+011.20e+04 ± 5.65e+04
f222.22e+03 ± 7.12e+012.22e+03 ± 5.66e+012.23e+03 ± 3.30e+012.20e+03 ± 1.00e+012.22e+03 ± 4.51e+01
f232.40e+03 ± 7.12e+012.63e+03 ± 1.26e-072.63e+03 ± 1.91e+012.63e+03 ± 1.02e-122.63e+03 ± 1.28e-01
f242.52e+03 ± 4.68e+002.52e+03 ± 4.87e+002.54e+03 ± 1.24e+012.51e+03 ± 4.04e+002.53e+03 ± 7.41e+00
f252.61e+03 ± 9.46e+002.62e+03 ± 1.79e+012.68e+03 ± 9.89e+002.70e+03 ± 3.72e+012.70e+03 ± 9.47e-02
f262.70e+03 ± 4.46e-022.70e+03 ± 1.62e-022.70e+03 ± 4.45e-022.70e+03 ± 4.31e-022.70e+03 ± 2.60e+01
f272.70e+03 ± 6.15e+013.00e+03 ± 1.37e+023.08e+03 ± 1.86e+023.10e+03 ± 1.67e+023.11e+03 ± 1.84e+02
f283.00e+03 ± 6.35e+013.16e+03 ± 1.43e+023.19e+03 ± 1.20e+013.19e+03 ± 7.26e+013.17e+03 ± 2.69e+01
f293.14e+03 ± 9.52e+013.33e+03 ± 2.41e+053.67e+03 ± 2.30e+023.23e+03 ±8.25e+053.57e+03 ± 5.15e+02
f303.47e+03 ± 6.87e+013.75e+03 ± 1.59e+023.92e+03 ± 3.03e+023.63e+03 ± 2.46e+023.65e+03 ± 2.59e+02

Fig.2

Convergence rate of each algorithm in functionf5"

Fig.3

Convergence rate of each algorithm in functionf16"

Fig.4

Convergence rate of each algorithm in functionf27"

1 MengX, LiuY, GaoX, et al. A New Bio-inspired Algorithm: Chicken Swarm Optimization[M]. Berlin: Springer International Publishing, 2014.
2 BanerjeeS, ChattopadhyayS. Improved serially concatenated convolution turbo code (SCCTC) using chicken swarm optimization[C]∥IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar, India, 2015.
3 HafezA I, ZawbaaH M, EmaryE, et al. An innovative approach for feature selection based on chicken swarm optimization[C]∥IEEE International Conference on Soft Computing & Pattern Recognition, Tokyo, Japan, 2016.
4 ChenP, MaoY. Wireless sensor network node localization algorithm based on chicken swarm optimization and multi-power mobile anchor[C]∥The 3rd International Conference on Materials Engineering, Manufacturing Technology and Control, Taiyuan, China, 2016.
5 MuY, ZhangL, ChenX, et al. Optimal trajectory planning for robotic manipulators using chicken swarm optimization[C]∥IEEE International Conference on Intelligent Human-machine Systems & Cybernetics, Chengdu, China, 2016.
6 Roslina, ZarlisM, YantoI T R, et al. A framework of training ANFIS using chicken swarm optimization for solving classification problems[C]∥IEEE International Conference on Informatics & Computing, Mataram, Indonesia,2017.
7 YiZ, LiuJ, WangS, et al. PAPR reduction technology based on CSO algorithm in CO-OFDM system[C]∥The International Conference on Optical Communications & Networks, Wuzhen, China, 2017.
8 WuYu, YanBo, QuXiang-ju. Improved chicken swarm optimization method for reentry trajectory optimization[J]. Mathematical Problems in Engineering, 2018(2): 1-13.
9 WuZ, YuD, KangX. Application of improved chicken swarm optimization for MPPT in photovoltaic system[J]. Optimal Control Applications and Methods, 2018, 39(2):1029-1042.
10 HanM, LiuS. An improved binary chicken swarm optimization algorithm for solving 0-1 Knapsack problem[C]∥The 13th International Conference on Computational Intelligence and Security (CIS), Hong Kong, 2017.
11 Yang, S X. Firefly algorithm, stochastic test functions and design optimisation[J]. International Journal of Bio-inspired Computation, 2010,2(2):78⁃84.
12 王沈娟, 高晓智. 萤火虫算法研究综述[J]. 微型机与应用, 2015, 34(8):8-11.
WangShen-juan, GaoXiao-zhi. A survey of firefly algorithm[J]. Microcomputer and Its Applications, 2015, 34(8):8-11.
13 MirjaliliS, MirjaliliS M, LewisA. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
14 龙文, 赵东泉, 徐松金, 等. 求解约束优化问题的改进灰狼优化算法[J]. 计算机应用, 2015, 35(9):2590-2595.
LongWen, ZhaoDong-quan, XuSong-jin,et al. Improved grey wolf optimization algorithm for constrained optimization problem[J]. Journal of Computer Applications, 2015, 35(9):2590-2595.
15 LiangJing, QuB Y, Suganthan PonnuthuraiN, et al. Problem definitions and evaluation criteria for the CEC 2013 special session and competition on single objective real-parameter numerical optimization[C]∥IEEE Congress on Evolutionary Computation,Beijing, China, 2014.
[1] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[2] ZHANG Hao, LIU Hai-ming, WU Chun-guo, ZHANG Yan-mei, ZHAO Tian-ming, LI Shou-tao. Detection method of vehicle in highway green toll lane based on multi-feature fusion [J]. 吉林大学学报(工学版), 2016, 46(1): 271-276.
[3] CHENG Yu, ZHAO Hong-wei, LONG Man-li, LI Yu-cui. Improvement of earliest deadline first scheduling algorithm [J]. 吉林大学学报(工学版), 2013, 43(05): 1338-1342.
[4] ZHAO Hong-wei, CHENG Yu, LI Zhuo, LI Yu-cui. Design of QoS architecture in IEEE802.16d [J]. 吉林大学学报(工学版), 2013, 43(03): 701-705.
[5] JIANG Ju-lang, HUANG Zhong, ZHENG Jiang-yun. Algorithm for texture atlas generation based on triangular bounding box [J]. , 2012, (06): 1543-1547.
[6] ZHAO Hong-wei, CUI Hong-rui, DAI Jin-bo, ZANG Xue-bai. Contour detection based on HMAX model and non-classical receptive field inhibition [J]. 吉林大学学报(工学版), 2012, 42(01): 128-133.
[7] ZHAO Xin,WANG Xiao-dong. Efficient self-adaptive broadcast authentication mechanism in wireless sensor networks [J]. 吉林大学学报(工学版), 2011, 41(03): 758-764.
[8] ZHAO Hong-Wei, ZHAO De-Fang, ZHANG Yuan, WEI Li. Application software thread of mobile video system based ARM9 [J]. 吉林大学学报(工学版), 2010, 40(增刊): 301-0303.
[9] DING Ying, LI Wen-Hui, FAN Jing-Tao, YANG Hua-Min. Fuzzy integral feature based algorithm for moving infrared object detection [J]. 吉林大学学报(工学版), 2010, 40(05): 1330-1335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!