Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 445-453.doi: 10.13229/j.cnki.jdxbgxb20190231

Previous Articles    

Intelligent manipulation method of crane based on BiLSTM model

Tao NI(),Hai-qiang LIU,Lin-lin WANG,Shao-yuan ZOU,Hong-yan ZHANG,Ling-tao HUANG()   

  1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
  • Received:2019-03-11 Online:2020-03-01 Published:2020-03-08
  • Contact: Ling-tao HUANG E-mail:nitao@jlu.edu.cn;hlt@jlu.edu.cn

Abstract:

To solve the problem that it is difficult for commander on the ground and driver to operate cranes cooperatively, an intelligent control method of the crane based on BiLSTM model was proposed, which realizes single-person control of crane, thus, reducing manpower cost. Firstly, Kinect sensors were used to collect the coordinates of human joints from the commander's instructions. Then, the vectors of human joints were constructed using the coordinates, and two kinds of characteristic matrices that distinguish different instructions were constructed by calculating the angles and modulus ratios between the vectors. After that, the feature matrix of angle was input into the instruction recognition network based on BiLSTM model, and the recognition results were compared with those of support vector machine (SVM) and back propagation (BP) neural networks. Finally, the feature matrices of angle and modulus ratio were fused to improve the accuracy. The experimental results show that the instruction recognition network designed in this paper achieves the highest accuracy rate and the proposed fusion recognition method utilizes the information of multiple features effectively. For the training set, the recognition rate can reach 99.13%, and for the test set, this rate can reach 96.75%.

Key words: intelligent operation of crane, identification of lifting instructions, characteristic matrix, BiLSTM model, multi-features fusion recognition

CLC Number: 

  • TH218

Fig.1

Working principle of crane"

Fig.2

Intelligent control system for crane based on BiLSTM model"

Fig.3

Three-dimensional coordinate system of Kinect"

Fig.4

Distribution of joints in human body under Kinect"

Table 1

Abbreviation of joints"

关节点简称关节点简称
左手腕wl右手腕wr
左肘el右肘er
左肩sl右肩sr
左脚踝al右脚踝ar
左膝kl右膝kr
左髋hl右髋hr
肩椎ss基节点b
h

Fig.5

Flow chart of extracting characteristic matrix"

Fig.6

Characteristics of human joints (left limbs)"

Table 2

Features of modulus ratios"

简称模比值简称模比值
r1rb,slr7rb,sr
r2rb,elr8rb,er
r3rb,wlr9rb,wr
r4rb,klr10rb,kr
r5rb,alr11rb,ar
r6rb,h

Table 3

Features of angles"

简称夹角简称夹角
θ1lsr,er,lss,srθ9lsr,er,lss,sr
θ2lb,sl,ls,slθ10lb,sr,ls,sr
θ3lsl,el,lel,wlθ11lsr,er,ler,wr
θ4lb,el,lsl,elθ12lb,er,lsr,er
θ5lb,hl,lhl,klθ13lb,hr,lhr,kr
θ6lhl,kl,lkl,alθ14lhr,kr,lkr,ar
θ7lb,kl,lhl,klθ15lb,kr,lhr,kr
θ8lb,ss,lss,hθ16lbs,sr,lss,h

Fig.7

Schema of a LSTM unit"

Fig.8

Instruction recognition networks based on BiLSTM"

Fig.9

Two kinds of fusion identification network"

Fig.10

Physical drawings of cranes"

Fig.11

Eight kinds of hoisting command signals to be identified"

Table 4

Recognition accuracy of different models"

识别模型训练集/%测试集/%
SVM80.7577.50
BP神经网络89.1385.25
图8网络93.3892.25

Fig.12

Cost function curve"

Table 5

Recognition accuracy of different models"

识别模型训练集%测试集/%
图8网络(输入特征矩阵Θ93.3892.25
图8网络(输入特征矩阵R92.3889.75
图9(a)网络(拼接RΘ融合)90.1385.75
图9(b)网络(加权融合)99.1396.75

Table 6

Confusion matrix of test set"

预备要主钩要副钩吊钩升吊钩降升臂降臂结束
预备0.96000.040000
要主钩00.9400.060000
要副钩001.0000000
吊钩升0.040.0400.920000
吊钩降0.040000.96000
升臂000000.980.020
降臂000000.020.980
结束00000001.00
1 臧大进, 戚玉强. 塔式起重机智能监控系统的研制[J]. 冶金设备, 2009(1): 50-53.
Zang Da-jin, Qi Yu-qiang. Development of intelligent monitoring system of tower cranes[J]. Metallurgical Equipment, 2009(1): 50-53.
2 潘斌, 汪小东. 塔式起重机安全管理的特点及对策[J]. 工业设计, 2011(6): 136.
Pan Bin, Wang Xiao-dong. Safety management characteristics and countermeasures of tower crane[J]. Design Ideas, 2011(6): 136.
3 腾文花. 关于塔吊使用的安全监控措施[J]. 建筑安全, 2007, 22(11): 36-36.
Teng Wen-hua. Safety monitoring measures for tower crane use[J]. Construction Safety, 2007, 22(11): 36-36.
4 李雄祥, 潘英俭, 廖拓. 起重机械的工作特点及发展趋势[J]. 中国水运: 理论版, 2007, 5(1): 171.
Li Xiong-xiang, Pan Ying-jian, Liao Tuo. Working characteristics and development trend of hoisting machinery[J]. China Water Transport, 2007, 5(1): 171.
5 张敏. 起重机检验中危险因素的识别与控制[J]. 科技风, 2015(12): 100.
Zhang Min. Identification and control of dangerous factors in crane inspection [J]. Technology Wind, 2015(12): 100.
6 尹浩. 港口门式起重机安全监控管理系统研究[D]. 武汉: 武汉纺织大学机械工程与自动化学院, 2015.
Yin Hao. Safety management characteristics and countermeasures of tower crane[D]. Wuhan: School of Mechanical Engineering and Automation, Wuhan Textile University, 2015.
7 贾秋枫. 大型履带式起重机吊装市场现状及发展趋势[J]. 石油化工建设, 2008, 30(5): 20-22.
Jia Qiu-feng. On the large scale crawler cranes hoisting business in China[J]. Petroleum & Chemical Construction, 2008, 30(5): 20-22.
8 Zhang C C. Design of a crane intelligent control system[C]∥International Conference on Humanities and Social Science Research, Busan, South Korea, 2016: 861-864.
9 An J Q, Chen F, Chen X, et al. Three dimensional hoisting simulation system based on virtual reality for truck crane[C]∥2015 34th Chinese Control Conference (CCC), Hangzhou, China, 2015: 8892-8897.
10 祁家榕, 张昌伟. 行为识别技术的研究与发展[J]. 智能计算机与应用, 2017, 7(4): 24-26, 30.
Qi Jia-rong, Zhang Chang-wei. Research and development of behavior recognition technology[J]. Intelligent Computer and Applications, 2017, 7(4): 24-26, 30.
11 倪涛, 赵泳嘉, 张红彦, 等. 基于Kinect动态手势识别的机械臂实时位姿控制系统[J]. 农业机械学报, 2017, 48(10): 417-423, 407.
Ni Tao, Zhao Yong-jia, Zhang Hong-yan, et al. Real-time mechanical arm position and pose control system by dynamic hand gesture recognition based on kinect device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 417-423, 407.
12 Canal G, Escalera S, Angulo C. A real-time human-robot interaction system based on gestures for assistive scenarios[J]. Computer Vision and Image Understanding, 2016, 149: 65-77.
13 张质文, 王金诺, 程文明, 等. 起重机设计手册[M]. 北京:中国铁道出版社, 2013.
14 石忠晓. 智能化起重机安全监控系统[D]. 大连: 大连理工大学机械工程学院, 2003.
Shi Zhong-xiao. Intelligent crane safety monitoring system[D]. Dalian: School of Mechanical Engineering, Dalian University of Technology, 2003.
15 韩旭. 应用Kinect的人体行为识别方法研究与系统设计[D]. 济南: 山东大学控制科学与工程学院, 2013.
Han Xu. The human behavior recognition research and system design using kinect[D]. Jinan: School of Control Science and Engineering, Shandong University, 2013.
16 Zhang S, Yang Y, Xiao J, et al. Fusing feometric features for skeleton-based action recognition using multilayer LSTM networks[J]. IEEE Transactions on Multimedia, 2018, 20(9): 2330-2343.
17 Cho K, Van M B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]∥Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014: 1724-1734.
18 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784.
Wang Xin, Wu Ji, Liu Chao, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784.
19 Greff K, Srivastava R K, Koutník J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232.
20 GB5 082-1985起重吊运指挥信号[S].
[1] DING Ning, WANG Long-shan, HE Ping. Design Principle of Rare Earth-Lifting Permanent Magnetic Crane [J]. 吉林大学学报(工学版), 2001, (1): 86-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!