Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1788-1795.doi: 10.13229/j.cnki.jdxbgxb20190793

Previous Articles    

Deep convolutional networks based image compression with enhancement of information flow

Zhi-jun LI(),Chu-xi YANG,Dan LIU,Da-yang SUN()   

  1. College of Communication Engineering, Jilin University, Changchun 130012, China
  • Received:2019-08-08 Online:2020-09-01 Published:2020-09-16
  • Contact: Da-yang SUN E-mail:zhijun@jlu.edu.cn;dysun@jlu.edu.cn

Abstract:

In the image compression process, the compression efficiency is largely affected by the information utilization. In order to improve the utilization of information, in this paper, we propose an end-to-end image compression method with information enhancement based on deep convolutional networks. In the encoding and decoding networks, a special network structure is adopted, which can both increase the forward and backward connections between the convolutional layers. As a result, the bidirectional information flow and the cyclic feedback of visual features are realized, which can effectively reduce the number of bits required for image compression. Experimental results show that, at the same compression ratio, the multiscale structural similarity index (MS-SSIM) of the reconstructed image of the proposed method can gain 0.08, 0.027 and 0.012 higher than JPEG, JPEG2000 and HEVC, respectively. The information enhancement structure based on deep convolutional network can effectively improve the coding efficiency when it is used for image compression.

Key words: image compression, auto encoder, convolution networks, information enhancement

CLC Number: 

  • TN919.81

Fig.1

Illustration of Clique block"

Table 1

Process of feature extraction of information enhancement block"

总输入第一阶段第二阶段总输出
输入特征权重系数输出输入特征权重系数输出
X0X0w01X1(1)X2(1),X3(1),X4(1)w21,w31,w41X1(2)X0,X1(2),X2(2),X3(2),X4(2)
X0,X1(1)w02,w12X2(1)X3(1),X4(1),X1(2)w32,w42,w12X2(2)
X0,X1(1),X2(1)w03,w13,w23X3(1)X4(1),X1(2),X2(2)w43,w13,w23X3(2)
X0,X1(1),X2(1),X3(1)w04,w14,w24,w34X4(1)X1(2),X2(2),X3(2)w14,w24,w34X4(2)

Fig.2

Framework of deep neural network based image compression"

Fig.3

Encoder network"

Fig.4

Comparison of R-D curves"

Fig.5

Detail comparison between reconstructed images"

1 刘丽丽, 陈贺新, 桑爱军, 等. 基于多维矢量矩阵正交变换理论的彩色图像压缩编码[J]. 吉林大学学报: 工学版,2011, 41(6): 1754-1759.
Liu Li-li, Chen He-xin, Sang Ai-jun, et al. Color image coding based on multidimensional vector matrix discrete cosine transform theory[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(6): 1754-1759.
2 桑爱军, 杨树媛, 赵欣. 基于多维矢量矩阵离散余弦变换的熵编码[J]. 吉林大学学报: 工学版, 2011, 41(): 319-324.
Sang Ai-jun, Yang Shu-yuan, Zhao Xin. Entropy code based on multidimensional vector matrix DCT[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(Sup.1): 319-324.
3 赵岩, 李丽, 王世刚. 结合成像几何特征的立体元图像阵列编码[J]. 光学精密工程, 2018, 26(12): 3060-3066.
Zhao Yan, Li Li, Wang Shi-gang. Elemental image array coding combining imaging geometry features[J]. Optics and Precision Engineering, 2018, 26(12): 3060-3066.
4 Wallace G K. The JPEG still picture compression standard[J]. IEEE Transactions on Consumer Electronics, 1992, 38(11): 1-17.
5 Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard[J]. IEEE Signal Processing Magazine, 2001, 18(5): 36-58.
6 Sullivan G, Ohm J, Han W, et al. Overview of the high efficiency video coding(HEVC) standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649-1668.
7 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, USA, 2016: 770-778.
8 Huang G, Liu Z, Maaten L V D, et al. Densely connected convolutional networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 2261-2269.
9 Yang Y, Zhong Z, Shen T, et al. Convolutional neural networks with alternately updated clique[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, 2018: 2413-2422.
10 Li M, Zuo W, Gu S, et al. Learning convolutional networks for content-weighted image compression[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, 2018: 3214-3223.
11 Mentzer F, Agustsson E, Tschannen M, et al. Conditional probability models for deep image compression[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, 2018: 4394-4402.
12 Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248-255.
13 Photo CD dataset Kodak [EB/OL]. (1999-11-15). [2013-01-27].
14 Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]∥Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2003: 1398-1402.
15 Theis L, Shi W, Cunningham A, et al. Lossy image compression with compressive autoencoders[C]∥ICLR2017, Toulon, 2017: 1-19.
[1] CHEN Mian-shu, WANG Yuan-yuan, SANG Ai-jun, CHEN He-xin. KL transformation based the theory of multidimensional vector matrix [J]. 吉林大学学报(工学版), 2016, 46(2): 627-631.
[2] HOU A-lin, LIAO Qing, JIN Zhi-juan, CHEN Juan, GENG Ying. Compression algorithm of computer-generated hologram based on artificial neural network [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 21-24.
[3] SANG Ai-jun, YANG Shu-yuan, ZHAO Xin. Entropy code based on multidimensional vector matrix DCT [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 319-324.
[4] ZHAO Zhi-jie1,2,CHEN He-xin1,SANG Ai-jun1 . Color image compression based on variable matrix size
three dimensional matrix wide DCT
[J]. 吉林大学学报(工学版), 2009, 39(01): 194-197.
[5] XIE Cheng-jun, LIU Tai-hui . Lossless hyper-spectral image compression algorithm based on mixing transform of SHIRCT, subtraction and CDF(2, 2) DWT [J]. 吉林大学学报(工学版), 2008, 38(04): 919-923.
[6] WANG Ai-li, ZHANG Ye, GU Yan-feng, CHEN Yu-shi . SAR image compression based on multiwavelet transform [J]. 吉林大学学报(工学版), 2008, 38(04): 966-969.
[7] Ding Yuan-yuan,Si Yu-juan,Lang Liu-qi, Luo Si-wei . VLSI implementation of image compression coding based on lifting wavelet transform [J]. 吉林大学学报(工学版), 2007, 37(03): 675-0680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!