Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1876-1885.doi: 10.13229/j.cnki.jdxbgxb20190484

Previous Articles    

Temporal and spatial distribution of incident sound field with low frequency in shallow water

Ling-guo ZHU1,2(),An-bang ZHAO1(),Bao-shan YANG2,Zhong-cheng MA2,3,Wen-zhang LIU2,Liang-hao LYU2   

  1. 1.College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
    2.First Research Laboratory, Dalian Scientific Test & Control Technology Institute, Dalian 116013, China
    3.Echo Research Laboratory, Science and Technology on Underwater Test and Control Laboratory, Dalian 116013, China
  • Received:2019-05-20 Online:2020-09-01 Published:2020-09-16
  • Contact: An-bang ZHAO E-mail:13478663345@163.com;zhaoanbang@hrbeu.edu.cn

Abstract:

Based on the normal mode theory, the spatial–temporal correlation, sound field structure and DOA characteristics of the incident sound field in the range of different sonar distances in shallow water channel are numerically analyzed. The receiver model is established according to the receiving model of the underwater target’s incoming sound field. The experiment of the spatial-temporal correlation characteristics of the incoming sound field in typical sonar frequency band is carried out. Theoretical and experimental studies show that the long-range wave sound field is mainly composed of low order simple positive waves, which approximates the horizontal incident in the vertical plane. The low frequency sound field has obvious time and space stability, and can predict the incident sound field.

Key words: underwater target, incident sound field, space-time distribution, shallow water channel

CLC Number: 

  • TB567

Fig.1

Spatial distribution of incident sound field at different distances"

Fig.2

Distance 10 km, total energy ratio of low order simple positive wave"

Fig.3

Distance 30 km, total energy ratio of low order simple positive wave"

Fig.4

Distance 60 km, total energy ratio of low order simple positive wave"

Fig.5

Analysis of arrival structure of incident sound field"

Fig.6

Horizontal longitudinal correlationcoefficient(1000 Hz)"

Fig.7

Vertical correlation coefficient(1000 Hz)"

Fig.8

Equivalent receiving model of incident sound field"

Fig.9

Situation chart of receiving sound field test"

Fig.10

Received signals at different distances"

Fig.11

Horizontal longitudinal correlation coefficient of different aperture"

Fig.12

Vertical correlation coefficient of different aperture"

Fig.13

Time stability of incident sound field(different positions)"

Fig.14

Signal variance of incident sound field(different positions)"

1 张仁和. 海洋声场的时间、频率与空间相干结构及其对阵列信号处理的影响[C/OL].[2005-01-01].
2 Guo L H, Gong Z X, Wu L X. Space and time coherence of acoustic field in shallow water[J]. Chinese Physics Letters, 2001, 18(10): 1366-1368.
3 林旺生, 梁国龙, 付进, 等. 浅海矢量声场干涉结构形成机理及试验研究[J]. 物理学报, 2013, 62(14): 265-273.
Lin Wang-sheng, Liang Guo-long, Fu-jin, et al. The mechanism of the interference structure in shallow water vector acoustic field and experimental investigation[J]. Acta Physica Sinica, 2013, 62(14): 265-273.
4 Zhang R H, Zhang S R, Xiao J Q, et al. Spatial coherence and temporal stability of the long-range sound field in shallow water[J]. Chinese Journal of Acoustic, 1984(4): 83-94.
5 宫在晓. 浅海低频声场的时空相干特性及其应用[D]. 北京: 中国科学院声学研究所, 2001.
Gong Zai-xiao. The spectial and temporal characteristics of sound field with low frequency in shallow water: research and appliction[D]. Beijing: Institute of Acoustics, Chinese Academy of Sciences, 2001.
6 舒象兰, 韩树平. 多途海洋声信道中声场相干性研究[C]∥全国声学设计与噪声振动控制工程暨配套装备学术会议, 青岛, 2010: 68-70.
7 程广利, 张敏明, 胡金华. 浅海相干声场不确定性研究[J]. 计算物理, 2013, 30(1): 105-110.
Cheng Guang-li, Zhang Min-ming, Hu Jin-hua. Uncertainty of coherent acoustic field in shallow water[J]. Chinese Journal of Computational Physics, 2013, 30(1): 105-110.
8 陈庚, 籍顺心. 菲律宾海声传播信道时空相关性变化实验[J]. 声学学报, 1994, 19(4): 266-277.
Chen Geng, Ji Shun-xin. Experiment study about correlation variation of acoustic propagation channel in philippines sea[J]. ACTA Acoustic, 1994, 19(4): 266-277.
9 Wan L, Zhou J X, Roger P H, et al. Spatial coherence measurements from low L-shape arrays in shallow water[J]. Acostical Physis, 2009, 55(3): 383-392.
10 Yang J. Spatial coherence in shallow water waveguide[D]. Atlanta: Georgia Institute of Technology, 2007.
11 毛岱山. 浅海声信道信号时间相关特性研究[J]. 海洋技术, 2006, 25(2): 67-69, 120.
Mao Dai-shan. Study on the characteristics of time-correlation in the shallow water acoustic channel[J]. Ocean Technology, 2006, 25(2): 67-69, 120.
12 孙梅, 李风华, 张仁和. 浅海声场垂直振速与水平振速相关特性及应用[J]. 声学学报, 2011, 36(2): 215-220.
Sun Mei, Li Feng-hua, Zhang Ren-he. Correlation characteristics of vertical particle velocity and horizontal particle velocity in shallow water and the application[J]. ACTA Acoustic, 2011, 36(2): 215-220.
13 王升, 马力, 郭圣明. 浅海单模入射声场目标回波特性研究[J]. 声学技术, 2015, 34(1): 18-22.
Wang Sheng, Ma Li, Guo Sheng-ming. Research on target echo characteristics ensonified by a signal mode in shallow water[J]. Technical Acoustics, 2015, 34(1): 18-22.
14 苏晓星. 浅海声场的水平纵向相关与波导不变性研究[D]. 北京: 中国科学院研究生院, 2006.
Su Xiao-xing. Longitudinal correlations and waveguide invariance of the acoustical field in shallow water[D]. Beijing: School of Graduate, Chinese Academy of Sciences, 2006.
[1] ZHAO An-bang, CHENG Yue, ZHOU Bin, AN Tian-si, LYU Liang-hao. OFDM system based on parametric array in underwater acoustic communication [J]. 吉林大学学报(工学版), 2016, 46(3): 979-984.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!