Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 379-385.doi: 10.13229/j.cnki.jdxbgxb20191098

Previous Articles    

Grain information compressed sensing based on semi-tensor product approach

Xin-yu JIN(),Mu-han XIE, SUN-Bin   

  1. College of Information Science & Electronic Engineering,Zhejiang University,Hangzhou 310027,China
  • Received:2019-12-02 Online:2021-01-01 Published:2021-01-20

Abstract:

In the conventional sampling ways, the cost in data transmission and storage is very high. To reduce the transmission and storage cost of the temperature, a novel compressed sensing system based on semi-tensor product (STP) is proposed. First, a low-dimensional random matrix is generated to globally sample the original data. Then a grouping reconstruction method is proposed to obtain the solution with the iteratively re-weighted least-square (IRLS) algorithm. Numerical results show that the proposed system outperforms conventional way in speed of reconstruction and its comparable quality of reconstruction, which is important for real-time applications.

Key words: signal and information processing, compressed sensing, semi-tensor product, iteratively re-weighted least squares, grain information

CLC Number: 

  • TS120

Fig.1

Frame work of grain information collection system"

Fig.2

Comparison of the reconstructed temperature"

Fig.3

Comparison of sparsity with DCT"

Table 1

Comparison of reconstruction performance"

仓房m/n本文方法文献[3]方法
均方误差重构时间/s均方误差重构时间/s
10.50.17670.31200.23350.9360
0.3750.27490.24960.52760.3120
0.250.35430.18720.76610.2496
20.50.08910.49920.17121.0608
0.3750.16300.26520.28910.3744
0.250.28780.18720.44240.1872
30.50.04100.45240.15260.9984
0.3750.17530.32760.28600.3900
0.250.29330.24960.42260.2028
40.50.07000.45240.18421.0764
0.3750.17130.32760.33020.3120
0.250.30050.18720.59000.2652
50.50.09340.39000.10420.9204
0.3750.16760.26520.37330.3900
0.250.26720.18720.50620.2028
60.50.04710.39000.11120.9984
0.3750.17770.31200.27670.3744
0.250.36910.24960.59120.2028
70.50.06600.37440.10651.0608
0.3750.13350.24960.30930.4212
0.250.27780.18720.50380.1404
80.50.05010.39000.11171.0296
0.3750.17720.31200.27670.3900
0.250.24050.24960.64710.2652
90.50.07780.45240.13110.9360
0.3750.17400.24960.51140.3120
0.250.35070.24960.60080.1872
100.50.05490.31200.18391.0140
0.3750.13350.31200.29490.3900
0.250.40670.18720.51360.3276
110.50.05540.37440.11251.0140
0.3750.16300.24960.49060.4524
0.250.33910.18720.51270.2028
120.50.05720.39000.10350.9516
0.3750.15820.32760.29030.3120
0.250.30440.24960.46980.2652
130.50.04830.31200.10101.1388
0.3750.12090.30000.21750.4524
0.250.35240.24960.52700.2496
1 Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
2 Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
3 傅洪亮, 陶华伟, 张贝贝. 基于压缩感知的储粮温度信息处理[J]. 河南工业大学学报:自然科学版, 2012, 33(1): 64-68.
Fu Hong-liang, Tao Hua-wei, Zhang Bei-bei. Grain storage temperature information processing based on compressive sensing[J]. Journal of Henan University of Technology(Natural Science Edition), 2012, 33(1): 64-68.
4 Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5702.
5 Kulkarni A, Mohsenin T. Low overhead architectures for OMP compressive sensing reconstruction algorithm[J]. IEEE Transactions on Circuits & Systems I: Regular Papers, 2017, 64(6): 1468-1480.
6 Wu G, Li X, Dai J. Improved measure algorithm based on CoSaMP for image recovery[J]. International Journal on Smart Sensing & Intelligent Systems, 2017, 7(2): 724-739.
7 Daubechies I, DeVore R, Fornasier M, et al. Iteratively reweighted least squares minimization for sparse recovery[J]. Communications on Pure and Applied Mathematics, 2010, 63(1): 1-38.
8 Candes E J, Wakin M B, Boyd P S. Enhancing sparsity by reweighted ℓ1-minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877-905.
9 Bu H, Tao R, Bai X, al et, Regularized smoothed ℓ0-norm algorithm and its application to CS-based radar imaging[J]. Signal Processing, 2016, 122(C): 115-122.
10 Chen D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach[M]. London: Springer, 2011.
11 王金铭, 叶时平, 徐振宇, 等. 半张量积低存储压缩感知方法研究[J]. 电子学报, 2018, 46(4): 797-804.
Wang Jin-ming, Ye Shi-ping, Xu Zhen-yu, et al. Low storage space of random measurement matrix for compressed sensing with semi-tensor product[J]. Acta Electronica Sinica, 2018, 46(4): 797-804.
12 Xie D, Peng H, Li L, et al. Semi-tensor compressed sensing[J]. Digital Signal Processing, 2016, 58: 85-92.
13 Wang J M, Zhu Z Y, Wang Z Q, et al. Rapid compressed sensing reconstruction: a semi-tensor product approach[J]. Information Sciences, 2020, 512(2020): 693-707.
14 Abolghasemi V, Ferdowsi S, Sanei S. A block-wise random sampling approach: compressed sensing problem[J]. Journal of AI and Data Mining, 2015, 3(1): 93-100.
15 程晓良, 郑璇, 韩渭敏. 求解欠定线性方程组稀疏解的算法[J]. 高校应用数学学报, 2013, 28(2): 235-248.
Cheng Xiao-liang, Zheng Xuan, Han Wei-min. Algorithms on the sparse solution of under-determined linear systems[J]. Applied Mathematics A: Journal of Chinese Universities, 2013, 28(2): 235-248.
[1] Li⁃min GUO,Xin CHEN,Tao CHEN. Radar signal modulation type recognition based on AlexNet model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 1000-1008.
[2] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[3] LIU Zhou-zhou, WANG Fu-bao. Improvement of discrete shuffled frog-leaping algorithm and application in compressed sensing reconstruction [J]. 吉林大学学报(工学版), 2016, 46(4): 1261-1268.
[4] WANG Xin-hua, OUYANG Ji-hong, PANG Wu-bin. Supper-resolution reconstruction of infrared images of compressive coded aperture [J]. 吉林大学学报(工学版), 2016, 46(4): 1239-1245.
[5] YU Hua-nan, DAI Fang-lin, SU Tian-kai. New compression and classification method of three-phase power quality disturbance signal based on compressed sensing [J]. 吉林大学学报(工学版), 2016, 46(3): 964-971.
[6] ZHANG Yi, DA Xin-yu, CHU Zhen-yong. Compressed sensing reconstruction of LDPC code [J]. 吉林大学学报(工学版), 2015, 45(3): 985-990.
[7] TIAN Wen-biao, RUI Guo-sheng, ZHANG Hai-bo, WANG Lin. Non-uniform information acquisition and reconstruction within compressed sensing framework [J]. 吉林大学学报(工学版), 2014, 44(4): 1209-1214.
[8] HE Yan, ZHAO Xiao-hui. Compressed sensing based multi-user collaborative detection for wideband cognitive radio networks [J]. 吉林大学学报(工学版), 2014, 44(4): 1165-1170.
[9] WANG Hao-qian, DU Cheng-li, HUI Zheng. New multi-view distributed video coding algorithm [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 225-229.
[10] GE Liang, HU Feng-ye, ZHAO Li-ying, LI Sha-sha. Joint reconstruction algorithm of biological feature detection based on WBAN [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 213-216.
[11] KANG Rong-zong, YU Hong-yi, TIAN Peng-wu, GUO Hong. Adaptive interference mitigation algorithm based on compressed sensing [J]. , 2012, (06): 1587-1591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!