Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 697-703.doi: 10.13229/j.cnki.jdxbgxb20191122

Previous Articles    

Reliability analysis of wind power generation system based on Markov process

Zhi-xin ZHAO1,2(),Hui TANG1,Ren-yun LIU1()   

  1. 1.School of Mathematics,Changchun Normal University,Changchun 130032,China
    2.School of Mathematics,Jilin University,Changchun 130012,China
  • Received:2019-12-09 Online:2021-03-01 Published:2021-02-09
  • Contact: Ren-yun LIU E-mail:jczzx10@163.com;liurenyun2005@163.com

Abstract:

This paper discusses a multi-state repairable and degraded wind power generation system with multiple maintenance strategies. According to the operating environment and the principle of wind power generation system, the reliability model of this system is established by using Markov process and reliability theory. This wind power generation system can be degraded into several discrete states over time, and the system can be converted into more intermediate states between the good state and complete failure. Then the system can be transformed into an abstract Cauchy problem, and the existence and uniqueness of the state probabilities of the repairable degenerate system are discussed. Finally, the simulation of the state probability, availability and other indexes of the degradation system was carried out under the determined energy efficiency grade. The study shows that the wind power system can be described by Markov process, and this model can effectively make quantitative analysis of the system reliability index.

Key words: systems engineering, repairable system, Markov process, availability

CLC Number: 

  • TB112

Fig.1

System reliability block diagram of wind power generation system"

Fig.2

Two-states of wind power generation system"

Fig.3

Degraded wind power generation system"

Fig.4

System state transition diagram"

Fig.5

State probability"

Fig.6

Instantaneous availability Av(t)"

Fig.7

Output performance expectation τ(t)"

1 李俊峰. 2012中国风电发展报告[M]. 北京: 中国环境科学出版社, 2012.
2 王志新. 海上风力发电技术[M]. 北京: 机械工业出版社, 2012.
3 李飞龙, 林勇刚, 李伟, 等. 风能静液压传动控制技术[J]. 吉林大学学报: 工学版, 2014, 44(6): 1664-1668.
Li Fei-long, Lin Yong-gang, Li Wei, et al. Energy hydraulic transmission system of wind turbine[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1664-1668.
4 马文星, 刘彬, 刘春宝, 等. 风力发电液力调速系统及其控制[J]. 吉林大学学报: 工学版, 2013, 43(5): 1276-1283.
Ma Wen-xing, Liu Bin, Liu Chun-bao, et al. Hydrodynamic speed adjusting system and its control of wind turbine[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(5): 1276-1283.
5 曲波, 郑阳, 刘大欣. 风电惯性台架模拟惯量的计算[J]. 吉林大学学报: 工学版, 2011, 41(): 155-159.
Qu Bo, Zheng Yang, Liu Da-xin. Calculation of intertia moment about wind turbine test-bed braking system[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(Sup.1): 155-159.
6 Tavner P J, Xiang J, Spinato E. Reliability analysis for wind turbines[J]. Wind Energy, 2007, 10(1): 1-18.
7 Selwyn T S, Kesavan R. Availability analysis of wind turbines and its sub assemblies with markov analysis at uncertain wind[J]. Advanced Science Letters,2013, 19(8): 2210-2214.
8 Florin M, Ciprian N. Availability evaluation of wind as a repairable system[C]∥International Conference on Optimization of Electrical and Electronic Equipment, Romania, 2014: 756-761.
9 Arabian H H, Oraee H, Tavner P J. Wind turbine productivity considering electrical subassembly reliability[J]. Renewable Energy, 2010, 35(1): 190-197.
10 李大字, 冯园园, 刘展, 等. 风力发电机组可靠性建模与维修策略优化[J]. 电网技术, 2011, 35(9): 122-127.
Li Da-zi, Feng Yuan-yuan, Liu Zhan, et al. Reliability modeling and maintenance strategy optimization for wind power generation sets[J]. Power System Technology, 2011, 35(9): 122-127.
11 秦洋, 马慧民, 朱田玮, 等. 风力发电系统可靠性建模与优化检修策略[J]. 电力科学与工程, 2015, 31(7): 53-58.
Qin Yang, Ma Hui-min, Zhu Tian-wei, et al. Reliability modelling and maintenance strategy optimization for wind power system[J]. Electric Power Science and Engineering, 2015, 31(7): 53-58.
12 Byon E, Yu D. Season-dependent condition-based maintenance for a wind turbine using a partially observed Markov decision process[J]. IEEE Transaction on Power System, 2010, 25(4): 1823-1834.
13 张晓红, 曾建潮, 石冠男, 等. 基于退化状态空间划分的风电机组视情维修决策[J]. 控制与决策, 2019, 34(9): 1909-1916.
Zhang Xiao-hong, Zeng Jian-chao, Shi Guan-nan, et al. Optimal decision of condition-based maintenance of wind turbines based on deterioration state-space partition[J]. Control and Decision, 2019, 34(9): 1909-1916.
14 苏春, 周小荃. 基于半马尔科夫决策过程的风力机状态维修优化[J]. 机械工程学报, 2012, 48(2): 44-49.
Su Chun, Zhou Xiao-quan. Condition-based maintenance optimization for wind turbines based on Semi-Markov decision process[J]. Journal of Mechanical Engineering, 2012, 48(2): 44-49.
15 Soro I W, Nourelfath M, Ait-Kadi D. Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance[J]. Reliability Engineering and System Safety, 2010, 95(2): 65-69.
16 霍娟, 唐贵基, 贾桂红, 等. 并网风电机组寿命分布拟合与维修方案评价[J]. 可再生能源, 2016, 34(5): 712-718.
Huo Juan, Tang Gui-ji, Jia Gui-hong, et al. Life distribution fitting and maintenance plan evaluation of grid connected wind turbines[J]. Renewable Energy Resources, 2016, 34(5): 712-718.
17 Rajeevan K, Shouri P V, Nair U. Markov modeling and reliability allocation in wind turbine for availability enhancement[J]. Life Cycle Reliability and Safety Engineering, 2018, 7(3): 147-157.
18 Geni G, Li X Z, Zhu G T. Functional Analysis Method in Queueing Theorem[M]. UK: Research Information Ltd, 2001.
[1] Chao⁃ying YIN,Chun⁃fu SHAO,Xiao⁃quan WANG. Influence of urban built environment on car commuting considering parking availability [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 714-719.
[2] SUN Bo-hua, DENG Wei-wen, ZHU Bing, WU Jian, WANG Shan-shan. Identification of vehicle motion intention based on reaction behavior model [J]. 吉林大学学报(工学版), 2018, 48(1): 36-43.
[3] CHI Xue-fen, HU Guang, CHEN Jie, DONG Wen, WANG Chun-yue. Analytical queuing model with time-varying Markov modulated service rate for M2M small data service [J]. 吉林大学学报(工学版), 2015, 45(3): 966-972.
[4] LI Xiao-bing, YANG Zhao-jun, LI Guo-fa, ZHAO Hong-wei, CHEN Fei, ZHU Xiao-cui. Instantaneous availability modelling of CNC machine tool based on functional data analysis [J]. , 2012, 42(05): 1151-1156.
[5] GUO Xue-dong, ZHANG Li-ye, DONG Li-juan, WU Yun-tao, ZHANG Qiang. Bridge system reliability assessment method [J]. , 2012, (03): 634-638.
[6] WEI Ling-hui|SHEN Gui-xiang|ZHANG Ying-zhi|CHEN Bing-kun|XUE Yu-xia. Modeling and simulating availability of CNC machine tools [J]. 吉林大学学报(工学版), 2011, 41(4): 993-997.
[7] WAN Li, LIAO Jian-xin, WANG Chun,. Social network information flow model based collaborative filtering algorithm [J]. 吉林大学学报(工学版), 2011, 41(01): 270-0275.
[8] ZHENG Rui,ZHANG Yin-zhi,SHEN Gui-xiang,HE Yu,SHAO Na. Research on a new failure rate model of repairable system [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 324-0327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!