Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 875-885.doi: 10.13229/j.cnki.jdxbgxb20200055

Previous Articles     Next Articles

Risk assessment of roadside accidents based on occupant injuries analysis

Guo-zhu CHENG1,2(),Rui CHENG1,Liang XU3,Wen-hui ZHANG1()   

  1. 1.School of Traffic and Transportation,Northeast Forestry University,Harbin 150040,China
    2.Chongqing Key Laboratory of Traffic&Transportation,Chongqing Jiaotong University,Chongqing 404100,China
    3.School of Civil Engineering,Changchun Institute of Technology,Changchun 130012,China
  • Received:2020-01-23 Online:2021-05-01 Published:2021-05-07
  • Contact: Wen-hui ZHANG E-mail:guozhucheng@126.com;rayear@163.com

Abstract:

The aims of this study are to achieve a quantitative assessment of the risk of roadside accidents on highways and to propose corresponding safety measures to reduce accident losses. First, the acceleration severity index (ASI) is used as the indicator of occupant injuries, and the horizontal radii, vehicle departure speeds, side slope and subgrade height are taken as research variables in this research. Second, collision tests of trucks and cars were carried out in the presence or absence of roadside guardrails by constructing the vehicle, road and guardrail models in PC-crash simulation software, a total of 1500 data points were collected. For straight and curved segments of highways, the occupant injury evaluation models of trucks and cars were fitted based on the ASI. Third, according to the Fisher optimal segmentation method, reasonable classification standards of risks of roadside accidents and the corresponding ASI thresholds were determined, and the risk assessment methods for roadside accidents based on the ASI were provided and verified. Finally. a proportion of trucks was introduced to further improve the ASI evaluation model. The results show that the ASI has a positive linear correlation with the departure speed and subgrade height, an exponential correlation with the side slope, and a power correlation with horizontal radii. Setting the roadside guardrail can reduce the roadside accident injuries of cars by 24%~28% and that of trucks by 31%~36%. Compared with cars, trucks are more prone to serious roadside accidents.

Key words: engineering of communicaitions and transportation safety, risk assessment, PC-crash, Fisher optimal segmentation method, roadside accident, occupant injury

CLC Number: 

  • U491.31

Table 1

Experiment parameter"

试验参数取值
车型“载重货车”=0、“小型客车”=1
驶出速度/(km·h-1)40、60、80、100、120
圆曲线半径/m+∞、600、500、400、300、200
边坡坡度1∶6.5、1∶5.5、1∶4.5、1∶3.5、1∶2.5、1∶1.5
路基高度/m0.5、2.5、4.5、6.5、8.5、10.5

Table 2

Departure angle"

变量取值
驶出速度/(km·h-1)406080100120
驶出角度/(°)129866

Fig.1

Test scene"

Fig.2

Relationship between ASI andvarious test variables"

Fig.3

Accident scene"

Fig.4

Road and vehicle models"

Table 3

Roadside guardrail dimensions"

参数数值
单跨护栏长度/m4.00
护栏横向宽度/m0.46
横梁上沿离地高度/m0.87
横梁下沿离地高度/m0.56
护栏重心高度/m0.00

Fig.5

Simulation result"

Table 4

Cars motion state"

车速

/(km·h-1)

圆曲线半径/m
+∞600500400300200
40
60
80
100
120

Table 5

Trucks motion state"

车速

/(km·h-1)

圆曲线半径/m
+∞600500400300200
40
60
80
100
120

Fig.6

ASI distribution with and withoutguardrail protection"

Table 6

Assessment models of occupant injuries"

编号道路类型模型表达式相关系数R2
1直线段ASIc=0.01Vc+0.127H+0.008e0.121α+0.161-0.24X0.975
2ASIc=0.01Vc+0.566e0.99H+0.019α-1.7181-0.38X0.863
3ASIc=0.002e0.001Vc+0.603logH+8.851×10-14e0.877α+0.0391-0.41X0.622
4ASIt=0.341e1.713Vt+0.085H+0.001e0.208α-0.051-0.37X0.765
5ASIt=0.006Vt+0.12H+6.544×10-9e0.54α+0.461-0.31X0.943
6ASIt=0.05Vt+0.347e0.19H+2.602×10-11e0.735α-1.1841-0.26X0.872
7曲线段ASIc=0.01Vc+0.076H+0.029e0.087α+0.763R-0.247+0.351-0.28X0.982
8ASIc=0.01Vc-1.849e-0.058H+6.155×10-6e0.327α-0.148R+1.0351-0.23X0.783
9ASIc=0.013Vc+0.161logH+0.024α-0.176R-1.0151-0.14X0.833
10ASIt=0.953e0.006Vt+0.333logH+0.3590.038α+0.018R-1.8551-0.36X0.712
11ASIt=0.012Vt+0.33logH+0.034α+0.006e-0.34R-1.0721-0.38X0.879
12ASIt=0.009Vt+0.15H+0.568e0.025α+14.796R-0.013-13.011-0.36X0.971

Fig.7

Relationship between the minimum errorfunction and the classification number"

Table 7

Classification results"

样本类别k最小误差函数分类情况β
ASIc有序样本2108.321{1~83}{84~126}-
350.012{1~31}{32~83}{84~126}1.64
430.467{1~31}{32~61}{62~83}{84~126}1.31
523.319{1~31}{32~61}{62~83}{84~102}{103~126}-
ASIt有序样本289.975{1~113}{114~166}-
333.721

{1~42}{43~113}

{114~166}

1.85
418.276

{1~42}{43~113}

{114~139}{140~166}

1.23
514.870{1~42}{43~87}{88~113}{114~139}{140~166}-

Table 8

Risk evaluation standards forroadside accidents"

风险等级ASIc阈值ASIt阈值乘员损伤等级
I级≤1≤1轻度受伤或未受伤
II级(1,1.43](1,1.56]中度受伤
III级(1.43,1.98](1.56,2.17]重度受伤
IV级>1.98>2.17死亡

Table 9

Case validation"

事故

编号

事故时速度

/(km·h-1)

道路

类型

圆曲线半径/m路基高度/m边坡坡度

路侧

护栏

事故

车型

驾驶人损伤等级ASI

风险

等级

1108直线+∞21∶1设置小型客车死亡2.54IV
266直线+∞41∶2设置小型客车中度1.16II
370直线+∞3.51∶3.5未设置小型客车重度1.36II
458直线+∞5.81∶4未设置小型客车中度1.52III
5117直线+∞4.31∶2.5未设置小型客车死亡1.99IV
689直线+∞0.91∶4.5未设置小型客车中度1.20II
772直线+∞5.51∶1设置小型客车重度2.61IV
880直线+∞7.81∶2.5设置小型客车重度1.57III
967直线+∞0.51∶5.5未设置载重货车轻度受伤0.92I
1054直线+∞2.51∶3.5未设置载重货车中度1.08II
1162直线+∞3.81∶5.5未设置载重货车中度1.29II
1257曲线88021∶1设置小型客车轻度受伤0.90I
1389曲线108041∶2设置小型客车重度1.23II
1494曲线11703.51∶3.5未设置小型客车重度1.72III
15105曲线24605.81∶4未设置小型客车死亡1.99IV
1678曲线33303.71∶4未设置小型客车重度1.54III
1744曲线2401.81∶2.5未设置小型客车未受伤1.15II
1859曲线98021∶4.5未设置小型客车中度1.26II
1972曲线7703.21∶4未设置载重货车死亡2.26IV
2066曲线9404.41∶3.5未设置载重货车中度2.35IV

Table10

Improved ASI thresholds"

风险等级ASI阈值
I级≤1
II级(1,1.43+0.13w]
III级(1.43+0.13w,1.98+0.19w]
IV级>1.98+0.19w
1 Zeeger C V, Hummer J, Reinfurt D, et al. Safety effects of cross-section design for two-lane roads[R]. United States:Federal Highway Administration,1987.
2 Shankar V, Mannering F. An exploratory multinomial logit analysis of single-vehicle motorcycle accident severity[J]. Journal of Safety Research, 1996, 27(3): 183-194.
3 Ayati E, Asghar S A, Moghaddam A M, et al. Introducing roadside hazard severity indicator based on evidential reasoning approach[J]. Safety Science, 2012, 50(7): 1618-1626.
4 Roque C, Cardoso J A O L. Safeside: a computer-aided procedure for integrating benefits and costs in roadside safety intervention decision making[J]. Safety Science, 2015, 74(1): 195-205.
5 Roque C, Moura F, Cardoso J A O L. Detecting unforgiving roadside contributors through the severity analysis of ran-off-road crashes[J]. Accident Analysis & Prevention, 2015, 80(4): 262-273.
6 Lee C, Li X. Predicting driver injury severity in single-vehicle and two-vehicle crashes with boosted regression trees[J]. Transportation Research Record, 2015, 2514(1): 138-148.
7 Park J, Abdel-Aty M, Lee J. Use of empirical and full Bayes before-after approaches to estimate the safety effects of roadside barriers with different crash conditions[J]. Journal of Safety Research, 2016, 58(6): 31-40.
8 Hou Qin-zhong, Huo Xiao-yan, Leng Jun-qiang, et al. Examination of driver injury severity in freeway single-vehicle crashes using a mixed logit model with heterogeneity-in-means[J]. Physica A: Statistical Mechanics and its Applications, 2019,531: 121760.
9 Li Zhen-ning, Yu-sheng Ci, Chen Cong, et al. Investigation of driver injury severities in rural single-vehicle crashes under rain conditions using mixed logit and latent class models[J]. Accident Analysis & Prevention, 2019, 124(3): 219-229.
10 高海龙, 李长城. 路侧安全设计指南[M]. 北京: 人民交通出版社, 2008.
11 方勇, 郭忠印, 李志勇. 双车道公路路侧环境客观安全性评估模型[J]. 同济大学学报:自然科学版, 2013, 41(7): 1025-1030.
Fang Yong, Guo Zhong-yin, Li Zhi-yong. Assessment model for roadside environment objective safety on two-lane highway[J]. Journal of Tongji University (Natural Science), 2013, 41(7): 1025-1030.
12 龙科军, 李寅, 雷正保, 等. 基于加速度严重指数的公路路侧危险度评估[J]. 中国公路学报, 2013, 26(3): 143-149.
Long Ke-jun, Li Yin, Lei Zheng-bao, et al. Evaluating roadside hazard rating based on acceleration severity index[J]. China Journal of Highway and Transport, 2013, 26(3): 143-149.
13 陈慧, 张绍理, 刘志刚, 等. 基于AHP方法的山区等级公路路侧防护措施设置研究[J]. 中外公路, 2014, 34(6): 285-288.
Chen Hui, Zhang Shao-li, Liu Zhi-gang, et al. Setting of roadside protection measures of mountain grade highway based on AHP method[J]. Journal of China and Foreign Highway, 2014, 34(6): 285-288.
14 . 公路交通安全设施设计规范[S].
15 . 公路路线设计规范[S].
16 Riser. European best practice for roadside design: guidelines for roadside infrastructure on new and existing roads[R]. Gothenburg:Chalmers University of Technology,2005.
17 EN 1317-2: 1998. Road restraint systems—part 2: performance classes, impact test acceptance criteria and test methods for safety barriers[S].
18 江亮, 贺宜. 电动两轮车风险驾驶行为及事故影响因素分析[J]. 吉林大学学报:工学版, 2019, 49(4): 1107-1113.
Jiang Liang, He Yi. Risky driving behavior and influencing factors analysis for electric two-wheeler[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1107-1113.
19 高继东, 曾必强, 彭伟. 电动自行车与轿车碰撞中骑车人的伤害特征[J]. 吉林大学学报:工学版, 2016, 46(6): 1786-1791.
Gao Ji-dong, Zeng Bi-qiang, Peng Wei. Cyclist injury collision between car and electric bicycle[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(6): 1786-1791.
20 Jr Ross H E, Sicking D L, Zimmer R A, et al. Recommended Procedures for the Safety Performance Evaluation of Highway Features[M]. Washington DC: Transportation Research Board National Research Council, 1993.
21 . 道路交通事故车辆速度鉴定[S].
22 王辰. 基于PC-CRASH的汽车-护栏事故再现研究[D]. 长春: 吉林大学交通学院, 2014.
Wang Chen. A study on PC-CRASH reconstructing vehicle-guardrail accident[D]. Changchun: College of Traffic and Transportation, Jilin University, 2014.
23 张维刚, 胡高贤. 土基中波形梁护栏立柱的有限元模型研究[J]. 公路交通科技, 2007(7): 143-146.
Zhang Wei-gang, Hu Gao-xian. Finite element model of a w-beam guardrail post mounted in soil[J]. Journal of Highway and Transportation Research and Development, 2007(7): 143-146.
24 . 公路波形梁钢护栏[S].
25 . 碳素结构钢技术条件[S].
26 高峰, 刘江, 杨新刚, 等. 基于Fisher最优分割法的机床热关键点优化研究[J]. 仪器仪表学报, 2013, 34(5): 1070-1075.
Gao Feng, Liu Jiang, Yang Xin-gang, et al. Study on optimization of thermal key points for machine tools based on fisher optimal segmentation method[J]. Chinese Journal of Scientific Instrument, 2013, 34(5): 1070-1075.
27 周源, 杜俊飞, 王子鸿, 等. 基于多种函数拟合的自适应最优分割法[J]. 统计与决策, 2019, 35(13): 65-68.
Zhou Yuan, Du Jun-fei, Wang Zi-hong, et al. Adaptive optimal partition method based on multi-function fitting[J]. Statistics & Decision, 2019, 35(13): 65-68.
[1] Yang LI,Shuo LI,Li-wei JING. Estimate model based on Bayesian model and machine learning algorithms applicated in financial risk assessment [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1862-1869.
[2] MAN Da-peng, ZHANG Bing, ZHOU Yuan, YANG Wu, YANG Yong-tian . Depthfirst method for attack graph generation [J]. 吉林大学学报(工学版), 2009, 39(02): 446-0452.
[3] Wang Kun,Yin Zhong-hai,Zhou Li-hua,Cai Zhen . Quantitative mathematical model for disaster recovery planning based on optimization theory [J]. 吉林大学学报(工学版), 2007, 37(01): 146-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!