Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2237-2245.doi: 10.13229/j.cnki.jdxbgxb20200694

Previous Articles    

Wideband signal direction of arrival estimation based on compressed sensing theory

Hui-jing DOU(),Gang DING,Jia GAO,Xiao LIANG   

  1. Department of Information Science,Beijing University of Technology,Beijing 100124,China
  • Received:2020-09-04 Online:2021-11-01 Published:2021-11-15

Abstract:

In order to solve the problem that the Direction of Arrival (DOA) estimation of one-dimensional wideband signal needs angle estimation, a DOA estimation algorithm without angle estimation is designed on the basis of bilateral correlation transform algorithm. Firstly, the wideband signal is decomposed into several narrow-band data models at different frequency points by using Discrete Fourier Transform (DFT). Secondly, the narrow-band data at different frequency points are focused on the same reference frequency point by the improved focusing matrix, thus, the narrow-band signal model at a single frequency point is obtained. Finally, the improved array covariance matrix sparse iterative estimation algorithm is used to solve the problem. Theoretical research shows that the proposed method has higher estimation accuracy and resolution than the traditional algorithm under the condition of low SNR and multiple snapshots, and the computational complexity of the algorithm is effectively reduced by combining with compressed sensing theory. The simulation results verify the reliability of the above conclusions.

Key words: signal and information processing, direction of arrival(DOA) estimation, compressive sensing, focusing transformatio

CLC Number: 

  • TN911.7

Table 1

Contrast table of focus transformationcriteria and focus matrix"

TCT算法聚焦变换准则T(fj)?A(fj,θ)S(fj)=A(f0,θ)S(f0)
聚焦矩阵T(fj)=Q(f0)QH(fj)
RSS算法聚焦变换准则T(fj)?A(fj,θ)=A(f0,θ)
聚焦矩阵T(fj)=V(fj,θ)UH(fj,θ)

MTLS-CSSM

算法

聚焦变换准则T(fj)?A(fj,θ)=A(f0,θ)
聚焦矩阵T(fj)=A0(A0HA0)-1/2(AjHAj)-1/2AjH

Fig.1

Comparison of DOA estimation effectiveness under different SNR"

Fig.2

Performance comparison of three algorithms when angle approaches"

Fig.3

Comparison of success rate of the algorithm under different angle intervals"

Fig.4

Comparison of DOA estimation successrate under different SNR"

Fig.5

Comparison of DOA estimation success rate under different snapshot number"

Fig.6

RMS error curve under different SNR"

Fig.7

RMS error curve under differentsnapshot number"

Table 2

Running time comparison of different algorithms"

算法复杂度运行时间/s
TCTO(M3+2N3M3+N2M3)2.735 147
l1-SRACVO(M3N3)2.290 214
本文O(kN3M3+M2)2.435 238
1 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京:清华大学出版社, 2004.
2 窦慧晶, 郭彩环, 张少飞, 等. 极化敏感阵列取向误差校正[J]. 吉林大学学报:工学版, 2016, 46(6): 2087-2093.
Dou Hui-jing, Guo Cai-huan, Zhang Shao-fei, et al. Alignment error correction of polarization sensitive array[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46 (6): 2087-2093.
3 Zhang Jia-cheng, Qiu Tian-shuang, Luan Sheng-yang, et al. Bounded non-linear covariance based ESPRIT method for noncircular signals in presence of impulsive noise[J]. Digital Signal Processing, 2019, 87: 104-111.
4 Herzog A, Habets E A P. Eigenbeam-ESPRIT for DOA-vector estimation[J]. IEEE Signal Processing Letters, 2019, 26(4): 572-576.
5 石要武, 石屹然, 陈淼, 等. 基于特征空间MUSIC算法的相干信号波达方向空间平滑估计[J]. 吉林大学学报: 工学版, 2017, 47(1):268-273.
Shi Yao-wu, Shi Yi-ran, Chen Miao, et al. Spatial smoothing estimation of direction of arrival of coherent signals based on feature space music algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(1): 268-273.
6 Gong Bing, Xu Yi-tao, Liu Zhong-jun. A fast algorithm of modified ism for wideband direction finding[C]∥International Conference of China Communication, Nanning,China, 2010: 417-422.
7 Bilgehan B, Amr A. Fast detection and DOA estimation of the unknown wideband signal sources[J]. International Journal of Communication Systems, 2019, 32(11): No.e3968.
8 Wang H, Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(4): 823-831.
9 Allam M, Moghaddamjoo A. Two-dimensional DFT projection for wideband direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1995, 43(7): 1728-1732.
10 Claudio E D, Parisi R. Weighted average of signal subspaces for robust wideband direction finding[J]. IEEE Transactions on Signal Processing, 2001, 49(10): 2179-2191.
11 石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070-1081.
Shi Guang-ming, Liu Dan-hua, Gao Da-hua, et al. Compressed sensing theory and its research progress[J]. Acta electronica Sinica, 2009, 37 (5): 1070-1081.
12 Knee P. Sparse Representations for Radar with Matlab Examples[M]. America, San Rafae: Morgan & Claypool, 2012.
13 Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
14 Mathews C P, Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2395-2407.
15 窦慧晶, 梁霄, 张文倩. 压缩估计理论的二维DOA估计[J]. 北京工业大学学报, 2021, 47(3): 231-238.
Dou Hui-jing, Liang Xiao, Zhang Wen-qian. Two dimensional DOA estimation based on compression estimation theory[J]. Journal of Beijing University of Technology, 2021, 47 (3): 231-238.
16 Ottersten B, Stoica P, Roy R. Covariance matching estimation techniques for array signal processing applications[J]. Digital Signal Process, 1998, 8(3): 185-210.
[1] Xin-yu JIN,Mu-han XIE, SUN-Bin. Grain information compressed sensing based on semi-tensor product approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 379-385.
[2] Li⁃min GUO,Xin CHEN,Tao CHEN. Radar signal modulation type recognition based on AlexNet model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 1000-1008.
[3] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[4] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[5] SHI Yao-wu, CHEN Miao, SHAN Ze-tao, SHI Yi-ran, SHAN Ze-biao. Spatial smoothing technique for coherent signal DOA estimation based on eigen space MUSIC algorithm [J]. 吉林大学学报(工学版), 2017, 47(1): 268-273.
[6] WANG Hong-zhi,WANG Xian-long,ZHOU Ting-ting. Image block compressive sensing reconstruction based on smooth L0 norm [J]. 吉林大学学报(工学版), 2015, 45(1): 322-327.
[7] ZHU Yong-gui, LIU Ping, CONG Jia. Splitting method to solve Lp problem in sparse image reconstruction [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 55-59.
[8] ZHAO Chun-hui, TENG Zhi-jun, MA Shuang. Distributed compressive wideband spectrum sensing based on generalized power spectrum density [J]. , 2012, 42(04): 1015-1020.
[9] CHEN Mei-Mei, GUO Shu-Xu, WANG Yao, WU Bin, XU Si-Yao, SHAO Xiang-Xin. Finger vein image denoising based on compressive sensing [J]. 吉林大学学报(工学版), 2011, 41(02): 559-0562.
[10] Chen Jian,Wang Shu-xun, Wei Xiao-li. New method for estimating twodimensional direction of arrival based on L-shape array [J]. 吉林大学学报(工学版), 2006, 36(04): 590-593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!