Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (8): 2165-2184.doi: 10.13229/j.cnki.jdxbgxb.20211099

   

Research progress of vibration control of vibration damping boring bar

Qiang LIU1,2(),Da-yong GAO1,Xian-li LIU1(),Ru-hong JIA1,Qiang ZHOU1,Zheng-yan BAI1   

  1. 1.Key Laboratory of Advanced Manufacturing and Intelligent Technology,Ministry of Education,Harbin University of Science and Technology,Harbin 150080,China
    2.Postdoctoral Research Station of Electrical Engineering,Harbin University of Science and Technology,Harbin 150080,China
  • Received:2021-10-23 Online:2023-08-01 Published:2023-08-21
  • Contact: Xian-li LIU E-mail:liuqianglink@163.com;xlliu@hrbust.edu.cn

Abstract:

In response to the problem of vibration caused by the large length/diameter ratio of the boring bar during deep hole boring, which affects the processing quality and efficiency, three vibration control methods, passive control, semi-active control, and active control, were summarized. The specific structures, vibration reduction mechanisms, characteristics, shortcomings, and development trends of the three methods have been sorted out. Comprehensive analysis shows that the structure, materials, and control methods of vibration damping boring bars are currently the focus of research. With the continuous development of structural design, material science, vibration reduction mechanism, control theory, big data, artificial intelligence and other technologies, the research on vibration damping boring bars is gradually becoming diversified, integrated, and intelligent. Meanwhile, intelligence is a new development direction for vibration damping boring bars.

Key words: boring process, vibration control, passive vibration damping boring bar, semi-active vibration damping boring bar, active vibration damping boring bar

CLC Number: 

  • TG713.3

Fig.1

Mitsubishi damping boring bar"

Fig.2

Structure optimization of damping boring bar"

Fig.3

Stepped vibration damping boring bar"

Fig.4

Adding auxiliary support type damping boring bar"

Fig.5

Variable stiffness/mass damping boring bar"

Fig.6

Two-degree-of-freedom vibration system model"

Fig.7

Edge inlaid carbide damping boring bar"

Fig.8

Vibration damping boring bar with nested structure"

Fig.9

Embedded vibration-damping boring bar"

Fig.10

Model and performance test site of cemented carbide boring bar"

Fig.11

Free damping type vibration damping boring bar"

Fig.12

Structure comparison between damping boring bar and ordinary boring bar"

Fig.13

Structure of the boring bar and the lobe diagram of the stability of the boring process"

Fig.14

Composite boring bar structure and its infinitesimal element deformation mode"

Fig.15

Internal impact energy dissipation damping boring bar"

Fig.16

External impact damping boring bar"

Fig.17

Particle impact damping boring bar"

Fig.18

Axial friction energy dissipation damping boring bar"

Fig.19

Friction energy dissipation boring bar"

Fig.20

New friction damper and its dynamic model"

Fig.21

Application site of the new friction damper"

Fig.22

Structure diagram of the fine boring squeeze film damping system"

Fig.23

Dynamic model and amplitude magnification curve of dynamic shock absorber"

Fig.24

Theoretical model of dynamic vibration damping boring bar"

Fig.25

Vibration damping boring bar with built-in dynamic vibration absorber"

Fig.26

Structure diagram of variable stiffness dynamic damping boring bar"

Fig.27

Built-in mass damping boring bar"

Fig.28

Built-in parallel double damping boring bar"

Fig.29

Sandvik vibration damping boring bar"

Fig.30

Electrorheological vibration damping boring bar and its dynamic model"

Fig.31

Performance test site of magnetorheological fluid damping boring bar"

Fig.32

Stability lobe diagram of the rod under different natural frequencies ωn"

Fig.33

Schematic view of magneto rheological assisted tool post"

Fig.34

Filled magnetorheological fluid damping boring bar"

Fig.35

Vibration damping boring bar with built-in variable stiffness dynamic vibration absorber"

Fig.36

Structural of variable stiffness-constrained damping type vibration damping boring bar"

Fig.37

Adjustable magnetic damping boring bar"

Fig.38

Vibration damping boring bar of variable mass dynamic shock absorber"

Fig.39

Semi-active fluid control damping boring bar"

Fig.40

Active damping boring bar and experimental device"

Fig.41

Post-mounted piezoelectric actuator vibration damping boring bar and its equivalent model"

Fig.42

Vibration damping boring bar integrating sensing and control functions"

Fig.43

Embedded GMA intelligent boring system"

Fig.44

Model of the boring bar MR damper with its components"

Fig.45

Magnetic drive type vibration damping boring bar"

Fig.46

Control block diagram of speed feedback controller"

Fig.47

Vibration damping boring bar with external voice coil driver"

Table 1

Types and characteristics of damping boring bars"

减振镗杆类型种类结构特点减振机理特点不足
被动减振镗杆精巧结构减振镗杆减小刀头质量,合理受力减小端部质量,缩短衰减时间结构简单,使用方便减振效果有限
阶梯状结构减小端部质量,增加后端刚度,提高固有频率适用于阶梯孔加工减振效果有限
添加气、液、固支撑结构增强系统刚度结构相对简单配套系统复杂
中空杆体结构改变刚度、质量、固有频率结构简单减振效果有限
削扁镗杆结构改变刚度,振型耦合结构简单理论分析复杂
高刚度减振镗杆镶嵌、嵌套、嵌入硬质合金及采用硬质合金杆体增加杆体刚度结构易于实现减振效果难以调节
高阻尼减振镗杆自由阻尼、约束阻尼、复合材料约束阻尼增加杆体阻尼增加阻尼结构略复杂
冲击耗能减振镗杆内置冲击块、外置冲击块、填充冲击颗粒利用冲击耗能减振结构简单噪音大,可控性差
摩擦耗能减振镗杆轴向摩擦、径向摩擦、 摩擦阻尼器利用摩擦耗能减振具有一定调节 功能结构略复杂
动力吸振式减振镗杆悬臂式动力吸振、动力吸振器、多质量块吸振器动力吸振原理减振产品广泛应用调节功能差
半主动减振 镗杆电流变材料减振镗杆固定端填充固液转化,改变刚度、阻尼具有调节功能材料易沉积,系统复杂
磁流变材料减振镗杆固定端填充、内部填充固液转化,改变刚度、阻尼具有调节功能材料易沉积,系统复杂
变参数动力吸振器减振镗杆安装伸缩悬臂动力吸振器、磁力支撑动力吸振器改变系统刚度,阻尼具有调节功能系统略复杂
变质量减振镗杆液体填充变质量吸振器,液体填充杆体空腔改变系统质量具有调节功能配套系统复杂
主动减振镗杆压电驱动杆体外部安装驱动器,后端嵌入安装驱动器,感知与驱动功能集成产生反向作用力具有调节功能, 实时控制系统复杂
电磁驱动杆体后端驱动,杆体前端驱动产生反向作用力具有调节功能, 实时控制系统复杂
1 王立平,杨叔子,杨兆军,等. 振动钻削的国内外研究状况和发展趋势[J]. 机械设计与制造工程,1999(2):6-9, 3.
Wang Li-ping, Yang Shu-zi, Yang Zhao-jun,et al. Research status and development trend of vibration drilling at home and abroad[J]. Mechanical Design and Manufacturing Engineering,1999(2):6-9, 3.
2 张月星,李强. 浅谈火炮身管加工工艺[J]. 装备制造技术,2014(2):241-242.
Zhang Yue-xing, Li Qiang. Talking about the processing technology of artillery barrel[J]. Equipment Manufacturing Technology,2014(2):241-242.
3 姚素娴,杨洪平. 某细长涡轮轴加工工艺研究[J]. 航空精密制造技术,2015(2):35-38.
Yao Su-xian, Yang Hong-ping. Research on machining processing for a slender turbine shaft[J]. Aviation Precision Manufacturing Technology,2015(2):35-38.
4 谈尚炯. 核电汽轮机低压转子的应力腐蚀寿命预测建模及计算分析[D]. 上海:上海交通大学机械与动力工程学院,2013.
Tan Shang-jiong. Modeling and calculation analysis of stress corrosion life prediction for low-pressure rotors of nuclear power steam turbines[D]. Shanghai:School of Mechanical Engineering,Shanghai Jiaotong University,2013.
5 章宗诚. 日本三菱公司新型高阻尼抗振FSCL型镗杆[J]. 工具技术,2000(5): 40.
Zhang Zong-cheng. New high damping and vibration resistant FSCL type boring bar from Mitsubishi Japan[J]. Tool Engineering,2000(5): 40.
6 袁黎. 大长径比减振镗杆的形状优化设计[D]. 湘潭:湖南科技大学机电工程学院,2014.
Yuan Li. Shape optimization design of large aspect ratio vibration-damping boring bar[D]. Xiangtan:School of Electromechanical Engineering,Hunan Uni-versity of Science and Technology,2014.
7 徐凤霞. 镗杆的辅助支撑[J]. 铁道机车车辆工人,1999(5):32.
Xu Feng-xia. Auxiliary support for boring bars[J]. Railway Locomotive and Rolling Stock Workers,1999(5):32.
8 夏元清. 工件支撑长镗杆[J]. 机械工人冷加工技术资料,1978(9):11.
Xia Yuan-qing. Workpiece support long boring bar[J]. Cold Working Technical Data for Mechanics,1978(9):11.
9 熊阳,张彬,鲍龙祥,等. 气浮镗杆在镗孔中的应用试验[J]. 航空精密制造技术,2017,53(6):42-45.
Xiong Yang, Zhang Bin, Bao Long-xiang,et al. Application of pneumatic boring bar in boring[J]. Aviation Precision Manufacturing Technology,2017,53(6):42-45.
10 Hayati S, Hajaliakbari M, Rajabi Y,et al. Chatter reduction in slender boring bar via a tunable holder with variable mass and stiffness[J]. Proceedings of the Institution of Mechanical Engineers Part B, Journal of Engineering Manufacture,2017,232(12):2098-2108.
11 谢峰,王文轩,雷小宝. 两种材料组合结构的削扁镗杆设计与仿真[J]. 系统仿真学报,2017,29(6):1290-1296.
Xie Feng, Wang Wen-xuan, Lei Xiao-bao. Design and simulation of cut flat boring bar by both materials' composite structure[J]. Journal of System Simulation,2017,29(6):1290-1296.
12 吴能章,周利平. 一种新型复合材料镗刀杆的建模与有限元分析[J]. 西华大学学报:自然科学版,2005(5):22-25.
Wu Neng-zhang, Zhou Li-ping. Mathematical model and finite element analysis for a new type of boring bar made of composite materials[J]. Journal of Xihua University (Natural Science Edition),2005(5):22-25.
13 Sortino M, Totis G, Prosperi F. Modeling the dynamic properties of conventional and high-damping boring bars[J]. Mechanical Systems & Signal Processing,2013,34(1/2):340-352.
14 Singaravelu C, Varatharajan P, Ramu G,et al. Investigation of damping characteristics on copper-based shape memory alloy frictional damper in boring process[J]. Arabian Journal for Science and Engineering,2021,21(6):501-512.
15 Hayati S, Shahrokhi M, Hedayati A. Development of a frictionally damped boring bar for chatter suppression in boring process[J]. The International Journal of Advanced Manufacturing Technology,2021,113(9):2761-2778.
16 Song Q H, Shi J H, Liu Z Q,et al. Boring bar with constrained layer damper for improving process stability[J]. International Journal of Advanced Manufacturing Technology,2016,83(9):1951-1966.
17 Dai G L, Hwang H Y, Kim J K. Design and manufacture of a carbon fiber epoxy rotating boring bar[J]. Composite Structures,2003,60:115-124.
18 Bonda A, Srinivas J, Nanda B K. Investigation of stability in internal turning using a boring bar with a passive constrained layer damping[J]. FME Transactions,2021, 49(2):384-394.
19 Zhang Y H, Ren Y S, Tian J C, et al. Chatter stability of the constrained layer damping composite boring bar in cutting process[J]. Journal of Vibration and Control,2019,25(1):2204-2214.
20 马伯乐,任勇生,张玉环,等. 旋转镗杆切削颤振稳定性预测[J]. 振动与冲击,2019,38(16):115-122.
Ma Bo-le, Ren Yong-sheng, Zhang Yu-huan,et al. Stability prediction of rotating boring bar[J]. Journal of Vibration and Shock,2019,38(16):115-122.
21 王栋. 冲击减振器对振动能量耗散性能分析[J]. 机械工程学报,2014,50(17):87-92.
Wang Dong. Analysis of vibration energy dissipation with vibro-impact absorber[J]. Journal of Mechanical Engineering,2014,50(17):87-92.
22 侯廷惠. 关于镗杆冲击减振器基本参数间隙C的确定[J]. 太原机械学院学报,1988,9(2):107-112.
Hou Ting-hui. Determination of the basic parameter clearance C of the boring bar shock absorber[J]. Journal of Taiyuan Institute of Machinery,1988,9(2):107-112.
23 Kanase S, Patil J, Jadhav S.Improvement of Ra value of boring operation using passive damper[J]. The International Journal of Engineering and Science,2013,2(7):103-108.
24 Biju C V, Shunmugam M S. Investigation into effect of particle impact damping (PID) on surface topography in boring operation[J]. International Journal of Advanced Manufacturing Technology,2014,75(5-8):1219-1231.
25 Senthil K M, Mohanasundaram K, Sathishkumar B. A case study on vibration control in a boring bar using particle damping[J]. International Journal of Engineering Science & Technology,2012,3(8):177-184.
26 Chockalingam S, Natarajan U, George C A. Damping investigation in boring bar using hybrid copper-zinc particles[J]. Journal of Vibration and Control,2015,23(13):2128-2134.
27 Edhi E, Hoshi T. Stabilization of high frequency chatter vibration in fine boring by friction damper[J]. Precision Engineering,2001,25(3):224-234.
28 区炳显. 摩擦减振镗杆的理论与实验研究[D]. 北京:北京工业大学机械工程与应用电子技术学院,2009.
Qu Bing-xian. Research on the theory and experiment of boring bar based on friction damper[D]. Beijing:College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, 2009.
29 Wang M, Zan T, Yang Y,et al. Design and implementation of nonlinear TMD for chatter suppression: an application in turning processes[J]. International Journal of Machine Tools & Manufacture,2010,50(5):474-479.
30 Yang Y, Liu Q, Wang M. Optimization of the tuned mass damper for chatter suppression in turning[J]. Chinese Journal of Mechanical Engineering,2011,23(16):717-724.
31 赵永成,黄宏彪,闫长罡,等. 精镗孔挤压液膜阻尼系统的仿真研究[J]. 机械工程学报,2003(8):151-154.
Zhao Yong-cheng, Huang Hong-biao, Yan Chang-gang,et al. Simulation research on precision boring squeeze film damping system[J]. Journal of Mechanical Engineering,2003(8):151-154.
32 赵永成,马飞,闫长罡,等. 精镗孔时液膜阻尼减振效果的研究[J]. 中国机械工程,2002(21):33-35, 61,4.
Zhao Yong-cheng, Ma Fei, Yan Chang-gang,et al. Research on the vibration reduction effect of liquid film damping in fine boring[J]. China Mechanical Engineering,2002(21):33-35, 61,4.
33 石建飞,苟向锋,张艳龙. 两自由度减振镗杆系统的安全盆侵蚀与分岔[J]. 振动与冲击,2018,37(22):238-244.
Shi Jian-fei, Gou Xiang-feng, Zhang Yan-long. Erosion and bifurcation of the safe basin of a two-degree-of-freedom damping boring bar system[J]. Journal of Vibration and Shock,2018,37(22):238-244.
34 贾富淳,孟宪皆,雷雨龙. 基于多目标遗传算法的二自由度动力吸振器优化设计[J]. 吉林大学学报:工学版,2019,49(6):1969-1976.
Jia Fu-chun, Meng Xian-jie, Lei Yu-long. Optimal design of two degrees of freedom dynamic vibration absorber based on multi-objective genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition),2019,49(6):1969-1976.
35 Rubio L, Loya J A, Miguelez M H,et al. Optimization of passive vibration absorbers to reduce chatter in boring[J]. Mechanical Systems & Signal Processing,2013,41(1/2):691-704.
36 G.AWRANCE, PAUL P.SAM, et al. Attenuation of vibration in boring tool using spring controlled impact damper[J]. International Journal on Interactive Design & Manufacturing,2015,11(4):903-915.
37 Hong J H, Guo Y Y, Song D S. A study on the design model of passive tunable damped boring bar[J]. Journal of the Korean Society for Precision Engineering,2017,34(12):917-926.
38 Li L, Sun B, Hua H. Analysis of the vibration characteristics of a boring bar with a variable stiffness dynamic vibration absorber[J]. Shock and Vibration,2019(9):2501-2513.
39 何苗,孙蓓蓓. 识别动力减振镗杆主系统等效参数的数学计算方法[J]. 振动与冲击,2019,38(6):194-198, 244.
He Miao, Sun Bei-bei. Mathematical method for the equivalent parameters identification of the main system of a dynamic damping boring bar[J]. Journal of Vibration and Shock,2019,38(6):194-198, 244.
40 Yoshimura M. Vibration-proof design of boring bar with multidegree-of-freedom dampers[J]. Journal of Mechanical Design,1986,108(4):442-447.
41 罗红波, 李伟. 内置式双减振镗杆动力学模型参数优化[J]. 四川大学学报: 工程科学版, 2012, 44(5):207-212.
Luo Hong-bo, Li Wei. Parameter optimization of dynamic model of built-in double-damping boring bar[J]. Journal of Sichuan University (Engineering Science Edition),2012,44(5):207-212.
42 山特维克可乐满公司. 采用 Silent Tools减振刀具实现更平稳的加工[J]. 金属加工(冷加工),2013(2):45-46.
Coromant Sandvik. Use silent tools to achieve smoother machining[J]. Metal Working (Metal Cutting),2013(2):45-46.
43 山高刀具有限公司. 山高新品 SteadylineTM [J]. 航空制造技术,2009(21):98-99.
Seco Cutting Tools CO,. Ltd,. Seco new steadylineTM [J]. Aeronautical Manufacturing Technology,2009(21):98-99.
44 任违,孔金星,岳晓斌,等. 减振镗杆动态特性的对比实验分析[J]. 工具技术,2010,44(11):45-48.
Ren Wei, Kong Jin-xing, Yue Xiao-bin,et al. Comparative experimental analysis of dynamic characteristics of damping boring bars[J]. Tool Engineering,2010,44(11):45-48.
45 王茂华,于骏一. 电流变技术在机床颤振控制中应用的研究[J]. 机械工程学报,2000(11):94-97.
Wang Mao-hua, Yu Jun-yi. Research on the application of electrorheological technology in machine tool chatter control[J]. Journal of Mechanical Engineering,2000(11):94-97.
46 张永亮,于骏,王茂华. 电流变液减振器及其在切削颤振控制中应用的研究现状[J]. 振动与冲击,2003(2):16-19, 100.
Zhang Yong-liang, Yu Jun, Wang Mao-hua. Research status of electrorheological fluid damper and its application in cutting chatter control[J]. Vibration and Shock,2003(2):16-19, 100.
47 张永亮,于骏一,侯东霞,等. 基于电流变效应的车削颤振预报控制技术的研究[J]. 机械工程学报,2005(4):206-211.
Zhang Yong-liang, Yu Jun-yi, Hou Dong-xia,et al. Research on chatter prediction and control technology for turning based on electrorheological effect[J]. Journal of Mechanical Engineering, 2005(4):206-211.
48 Jacob Rabinow.The magnetic fluid clutch[J]. Electrical Engineering,1951,67(12):1167-1167.
49 史文库,张曙光,张友坤,等. 基于改进海鸥算法的磁流变减振器模型辨识[J]. 吉林大学学报:工学版,2022,52(4):764-772.
Shi Wen-ku, Zhang Shu-guang, Zhang You-kun,et al. Parameter identification of magnetorheological damper model with modified seagull optimization algorithm[J]. Journal of Jilin University (Engineering and Technology Edition),2022,52(4):764-772.
50 Wang M, Fei R Y. Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids[J]. International Journal of Machine Tools & Manufacture,1999,39(12):1925-1934.
51 王民,费仁元,杨建武,等. 应用电流变材料改变镗杆动态特性的研究[J]. 中国机械工程,1999(12):39-42, 5.
Wang Min, Fei Ren-yuan, Yang Jian-wu,et al. Research on the application of electrorheological materials to change the dynamic characteristics of boring bars[J]. China Mechanical Engineering,1999(12):39-42, 5.
52 王民,费仁元. 基于电流变材料的切削颤振在线监控技术研究[J]. 机械工程学报,2002(12):93-97.
Wang Min, Fei Ren-yuan. Research on online monitoring technology of cutting chatter based on electrorheological materials[J]. Journal of Mechanical Engineering, 2002(12):93-97.
53 Mei D, Kong T, Shih A J,et al. Magnetorheological fluid-controlled boring bar for chatter suppression[J]. Journal of Materials Processing Technoloygy,2009,209(4):1861-1870.
54 Mei D, Yao Z, Kong T,et al. Parameter optimization of time-varying stiffness method for chatter suppression based on magnetorheological fluid-controlled boring bar[J]. International Journal of Advanced Manufacturing Technology,2010,46(9-12):1071-1083.
55 李欣,梅德庆,陈子辰. 基于ICA的镗削过程颤振征兆信号分离方法研究[J]. 振动与冲击,2013,32(9):5-9.
Li Xin, Mei De-qing, Chen Zi-chen. Research on ICA-based flutter signal separation method in boring process[J]. Journal of Vibration and Shock,2013,32(9): 5-9.
56 Srilatha,Shalaja, Kumar S. Investigation of magnetorheolgical fulid (MRF) boring bar for chatter stablity[J]. International Journal of Mechanical Engineering and Technology,2016,7(4):75-182.
57 Prabhu L, Kumar S S, Dinakaran D,et al. Improvement of chatter stability in boring operations with semi active magneto-rheological fluid damper[J]. Materials Today: Proceedings, 2020,33(10):651-659.
58 Biju C V, Shunmugam M S. Development of a boring bar with magneto rheological fluid damping and assessment of its dynamic characteristics[J]. Journal of Vibration and Control,2017,24(14):3094-3106.
59 Liu X, Liu Q, Wu S,et al. Analysis of the vibration characteristics and adjustment method of boring bar with a variable stiffness vibration absorber[J]. International Journal of Advanced Manufacturing Technology,2017,98(9):95-105.
60 刘立佳. 变刚度-约束阻尼减振镗杆设计及特性研究[D]. 哈尔滨:哈尔滨理工大学机械动力工程学院,2016.
Liu Li-jia. Design and characteristics research on damping boring bar with variable stiffness and constrained damping[D]. Harbin:Mechanical Manu-facture and Automation,Harbin University of Science and Technology,2016.
61 赵康,罗红波,李伟. 可调磁力减振镗杆动力学模型参数优化[J]. 组合机床与自动化加工技术,2016(1):94-97.
Zhao Kang, Luo Hong-bo, Li Wei. Parameters optimization of controllable magnetic damping boring bar's kinetic model[J]. Modular Machine Tool and Automatic Manufacturing Technology,2016(1):94-97.
62 刘强,刘献礼,吴石,等. 变质量动力吸振器减振镗杆减振性能研究[J]. 哈尔滨理工大学学报,2018,23(5):25-29.
Liu Qiang, Liu Xian-li, Wu Shi,et al. Analysis of the vibration reduction characteristics of boringbar with a variable mass dynamic vibration absorber[J]. Journal of Harbin University of Science and Technology,2018,23(5):25-29.
63 Alammari Y, Sanati M, Freiheit T,et al. Investigation of boring bar dynamics for chatter suppression[J]. Procedia Manufacturing,2015(1):768-778.
64 Teti R, Jemielniak K, O'Donnell G,et al. Advanced monitoring of machining operations[J]. CIRP Annals-Manufacturing Technology,2010,59(2):717-739.
65 刘献礼,刘强,岳彩旭,等. 切削过程中的智能技术[J].机械工程学报,2018,54(16):45-61.
Liu Xian-li, Liu Qiang, Yue Cai-xu,et al. Intelligent technology in the cutting process[J]. Journal of Mechanical Engineering,2018,54(16):45-61.
66 Niccolo G, Croppi L, Scippa A,et al. A dedicated design strategy for active boring bar[J]. Applied Sciences,2019,9(17):35-41.
67 Yamada K, Matsuhisa H, Utsuno H. Enhancement of efficiency of vibration suppression using piezoelectric elements and LR circuit by amplification of electrical resonance[J]. Journal of Sound & Vibration,2014,333(5):1281-1301.
68 Matsubara A, Maeda M, Yamaji I. Vibration suppression of boring bar by piezoelectric actuators and LR circuit[J]. CIRP Annals-Manufacturing Technology,2014,63(1):373-376.
69 刘春颖. 镗杆振动的主动最优控制仿真研究[D]. 长春:吉林大学机械与航空航天工程学院,2007.
Liu Chun-ying. Research of simulation on active optimal control of boring bar vibration[D]. Changchun:School of Mechanical and Aerospace Engineering,Jilin University,2007.
70 孔繁森,刘鹏,刘春颖. 基于压电智能结构的镗削振动主动控制的仿真与实验研究[J]. 振动与冲击,2010,29(3):142-146,210-211.
Kong Fan-sen, Liu Peng, Liu Chun-ying. Simulation and experimental research on active control of boring vibration based on piezoelectric smart structure[J]. Journal of Vibration and Shock, 2010, 29(3): 142-146,210-211.
71 Peng H, Xu H, Wu Y,et al. Research on multi-parametric coupling design method of deformable boring bar in embedded giant magnetostrictive actuator[J]. International Journal of Precision Engineering and Manufacturing,2020,21(9-12):2234-2245.
72 Saleh M, Nejatpour M, Acar H Y,et al. A new magnetorheological damper for chatter stability of boring tools[J]. Journal of Materials Processing Technology,2020,289(1):116931.
73 Lu X, Chen F, Altintas Y. Magnetic actuator for active damping of boring bars[J]. CIRP Annals—Manufacturing Technology,2014,63(1):369-372.
74 Chen F, Lu X, Altintas Y. A novel magnetic actuator design for active damping of machining tools[J]. International Journal of Machine Tools & Manufacture,2014,85(7):58-69.
75 Chen F, Hanifzadegan M, Altintas Y,et al. Active damping of boring bar vibration with a magnetic actuator[J]. IEEE/ASME Transactions on Mechatronics,2015,20(6):2783-2794.
76 Chen F, Liu G. Active damping of machine tool vibrations and cutting force measurement with a magnetic actuator[J]. The International Journal of Advanced Manufacturing Technology,2017,89(1):691-700.
77 Aimini P N, Moetakef-Imani B. High-performance controller design and evaluation for active vibration control in boring[J]. Scientia Iranica,2019,29(5):2839-2853.
78 Fallah M, Moetakef-Imani B.Investigation on nonlinear dynamics and active control of boring bar chatter[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2021,43(3):1116-1143.
79 刘强,张海军,刘献礼,等. 智能刀具研究综述[J].机械工程学报,2021,57(21):248-268.
Liu Qiang, Zhang Hai-jun, Liu Xian-li,et al. A review of research on intelligent cutting tools[J]. Journal of Mechanical Engineering,2021,57(21):248-268.
80 刘献礼,李雪冰,丁明娜,等. 面向智能制造的刀具全生命周期智能管控技术[J].机械工程学报,2021,57(10):196-219.
Liu Xian-li, Li Xue-bing, Ding Ming-na,et al. Intelligent management and control technology of cutting tool life-cycle for intelligent manufacturing[J]. Journal of Mechanical Engineering,2021,57(10):196-219.
81 Liu X, Liu S, Li X,et al. Intelligent tool wear monitoring based on parallel residual and stacked bidirectional long short-term memory network[J]. Journal of Manufacturing Systems,2021,60:608-619.
82 Li X B, Liu X J, Yue C X,et al. A data-driven approach for tool wear recognition and quantitative prediction based on radar map feature fusion[J].Measurement,2021,185:1172-1186.
[1] WANG Pan, LU Jun, DENG Zhao-xiang, LIAO Hai-chen, WANG Zheng-ya, YANG Xiao-guang. Modal control of smart constrained layer damping plate based on state observer [J]. 吉林大学学报(工学版), 2016, 46(4): 1057-1064.
[2] MA Jian-Ming, HE Jing-Feng, XIONG Hai-Guo, HAN Jun-Wei. Vibration control strategy for sixDOF motion simulator [J]. 吉林大学学报(工学版), 2010, 40(02): 511-0516.
[3] Song Min, Chen Yudong, Chen Suhuan. Robustness analysis of responses of vibration control structures with uncertain parameters [J]. 吉林大学学报(工学版), 2006, 36(增刊1): 38-0041.
[4] Song Min,, Chen Yudong, Chen Suhuan. Stability Robustness of Closedloop System with Uncertain Parameters Using Interval Analysis [J]. 吉林大学学报(工学版), 2006, 36(01): 5-0009.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!