Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 1099-1104.doi: 10.13229/j.cnki.jdxbgxb.20221558

Previous Articles    

Detecting method for center deviation of integrated optical waveguide phased array

Chao-jun YAN1,2(),Di WU1,2   

  1. 1.College of Computer Information and Technology,Three Gorges University,Yichang 443002,China
    2.The Institute of Electronics and Telecommunications,Three Gorges University,Yichang 443002,China
  • Received:2022-12-05 Online:2024-04-01 Published:2024-05-17

Abstract:

In the imaging process of optical waveguide, the center of the array is prone to shift, and the detection accuracy of the center shift of the phased array is low. For this reason, a method to detect the center deviation of integrated optical waveguide phased array is proposed. The optical wave field of integrated optical waveguide is modeled by the beam propagation method, and the scanning characteristics of integrated optical waveguide are analyzed according to the grating diffraction theory. When the center of the phased array is in the deviation state, the phased array planes are not parallel in the integrated optical waveguide. On the basis of the optical autocollimation method and the scanning characteristics of the integrated optical waveguide, the parallelism of the phased array in the integrated optical waveguide is calculated to obtain the parallelism of the phased array plane in the x and y directions, and the deviation degree of the integrated optical waveguide phased array center is detected based on this. The experimental results show that the detection errors of the proposed method in the x and y directions are 0.001 and 0.002, and the detection results are consistent with the actual results, which proves that the proposed method has high detection accuracy.

Key words: integrated optical waveguide, phased array, grating diffraction theory, beam propagation method, optical autocollimation method, array center deviation detection

CLC Number: 

  • TH712

Fig.1

Structure of optical autocollimation system"

Fig.2

Principle of parallelism measurement"

Fig.3

Integrated optical waveguide"

Fig.4

Normalized power pattern of optical waveguidearray"

Fig.5

Test results of different methods"

Table 1

Detection errors of three methods in different directions"

方法方向误差/mm
本文x0.001
y0.002
文献[3x0.015
y0.013
文献[4x0.017
y0.016
1 邱劲, 张昭玉. 不平衡大数据阵列的挖掘算法仿真[J]. 计算机仿真,2022, 39(7): 446-450.
Qiu Jin, Zhang Zhao-yu. Simulation of mining algorithm for unbalanced big data array[J]. Computer Simulation, 2022, 39(7): 446-450.
2 王欣, 张家洪, 陈福深, 等. 微型集成光波导电场传感器的设计[J]. 传感技术学报, 2021, 34(11): 1445-1450.
Wang Xin, Zhang Jia-hong, Chen Fu-shen, et al. Design of miniature integrated optical waveguide electric field sensor[J]. Chinese Journal of Sensors and Actuators, 2021, 34(11): 1445-1450.
3 张家洪, 姜超, 李英娜,等. 一种基于平衡探测的集成光波导电场传感器及系统[J]. 激光与光电子学进展, 2021, 58(19): 9-17.
Zhang Jia-hong, Jiang Chao, Li Ying-na, et al. Development of integrated optical waveguide electric field sensor based on balance detection[J] Laser & Optoelectronics Progress, 2021, 58(19): 9-17.
4 张建鑫, 张家洪, 陈福深. 集成光波导直流电场传感器设计与实现[J]. 光子学报, 2021, 50(5): 67-75.
Zhang Jian-xin, Zhang Jia-hong, Chen Fu-shen. Design and implementation of integrated optical waveguide DC electric field sensor[J]. Acta Photonica Sinica, 2021, 50 (05): 67-75.
5 Zhang J, Yang L, Li Y. Non‐invasive measurement of intensive power‐frequency electric field using a LiNbO3‐integrated optical waveguide sensor[J]. IET Science, Measurement & Technology, 2021, 15(1): 101-108.
6 温广锋, 赵领中, 张琳, 等. 基于柱对称梯度折射率体系的可调控光束传输[J]. 物理学报, 2022, 71(14):108-117.
Wen Guang-feng, Zhao Ling-zhong, Zhang Lin, et al. Tunable beam propagation based on cylindrically symmetric gradient index system[J]. Acta Physica Sinica, 2022, 71 (14): 108-117.
7 于策, 王天枢, 张莹, 等. 大气湍流信道中OAM光束与高斯光束传输性能的实验研究[J]. 红外与激光工程, 2021, 50(8): 309-318.
Yu Ce, Wang Tian-shu, Zhang Ying, et al. Experimental research on transmission performance on OAM beam and Gaussian beam in atmospheric turbulence channel[J]. Infrared and Laser Engineering, 2021, 50 (8): 309-318.
8 陈佳艺, 王建新, 白福忠, 等. 相位光栅衍射法测量高灰阶LC-SLM相位调制特性[J]. 中国测试, 2022, 48(3): 35-40.
Chen Jia-yi, Wang Jian-xin, Bai Fu-zhong, et al. Phase modulation characteristics measurement of high gray-level LC-SLM by using phase grating diffraction method[J]. China Measurement & Test, 2022,48 (3): 35-40.
9 王义全, 张颖, 陈笑, 等. 基于傅里叶变换的光栅衍射分析[J]. 大学物理, 2022, 41(7): 39-42.
Wang Yi-quan, Zhang Ying, Chen Xiao, et al. Analysis of grating diffraction based on Fourier transform [J]. College Physics, 2022, 41 (7): 39-42.
10 Jamil B, Choi Y. Modified stiffness-based soft optical waveguide integrated pneumatic artificial muscle (PAM) actuators for contraction and force sensing[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(6): 3243-3253.
11 刘智颖, 郑秋水, 李文博, 等. 倾斜分束片型复色自准直仪光学系统[J]. 光学精密工程, 2021, 29(4):682-690.
Liu Zhi-ying, Zheng Qiu-shui, Li Wen-bo, et al. Optical system of tilted beam splitter type multicolor autocollimator [J]. Optics and Precision Engineering, 2021, 29 (4): 682-690.
12 李景润, 熊木地, 张增宝. 基于图像处理的光学谐振腔自准直研究方法[J]. 强激光与粒子束, 2020, 32(5): 12-20.
Li Jing-run, Xiong Mu-di, Zhang Zeng-bao. Optical cavity self-collimation research method based on image processing[J]. High Power Laser and Particle Beams, 2020, 32 (5): 12-20.
13 周旭环, 龚云辉, 吴绍华, 等. 基于光的反射与折射定律的表述方法推导及应用[J]. 应用光学, 2022, 43(3): 510-517.
Zhou Xu-huan, Gong Yun-hui, Wu Shao-hua, et al. Derivation and application of expression methods based on law of reflection and refraction of light[J]. Journal of Applied Optics, 2022, 43 (3): 510-517.
14 Cardona S C A, Gutiérrez V J. The law of refraction and Kepler's heuristics[J]. Archive for History of Exact Sciences, 2020, 74(1): 45-75.
[1] YUAN Long-tao, TIAN Xiang, CHEN Yao-wu. Selection of adaptive threshold for phased array 3D sonar [J]. 吉林大学学报(工学版), 2013, 43(03): 841-848.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!