Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1401-1406.doi: 10.13229/j.cnki.jdxbgxb.20230120

Previous Articles    

Design of fuzzy clustering algorithm for massive cloud data based on density peak

Xi-guang ZHANG1(),Long-fei ZHANG2,Yu-xi MA3,Yin-ting FAN1   

  1. 1.Zhongyuan-Petersburg Aviation College,Zhongyuan University of Technology,Zhengzhou 450007,China
    2.School of Computer Science & Technology,Beijing Institute of Technology,Beijing 100081,China
    3.Integration & Innovation Center,Institute of Software Chinese Academy of Sciences,Beijing 100080,China
  • Received:2023-02-09 Online:2024-05-01 Published:2024-06-11

Abstract:

In order to cluster massive cloud data accurately, a fuzzy clustering algorithm for massive cloud data based on peak density is proposed. The cloud data with noise is separated by BP neural network, and the output noise is reconstructed by singular value decomposition to obtain the noise output by the joint algorithm. The cloud data with noise is subtracted from the output noise to obtain the cloud data after noise removal. The density peak is combined with the optimized fuzzy clustering algorithm to adaptively form the initial clustering center, determine the number of clusters, and finally realize the fuzzy clustering of massive cloud data. Experimental results show that the clustering effect and efficiency of the proposed algorithm are significantly better than other algorithms.

Key words: peak density, massive cloud data, fuzzy clustering, bat algorithm, neural network, singular value

CLC Number: 

  • TP391

Fig.1

Structure of BP neural network"

Fig.2

Operation flow chart of fuzzy clustering algorithm for massive cloud data based on density peak"

Fig.3

Distribution of test data set"

Fig.4

Comparative analysis of cloud data fuzzy clustering results of different algorithms"

Fig.5

Comparative analysis of clustering purity test results of different algorithms"

Fig.6

Comparison of clustering efficiency results of different algorithms under different data sets"

1 潘文标, 元文浩. 基于密度划分的云数据分块存储方法仿真[J]. 计算机仿真, 2022, 39(8): 456-459.
Pan Wen-biao, Yuan Wen-hao. Simulation of cloud data block storage method based on density division[J]. Computer Simulation, 2022, 39(8): 456-459.
2 Pan H, Lei Y, Yin S. K-means clustering algorithm for data distribution in cloud computing environment[J]. International Journal of Grid and Utility Computing, 2021, 12(3): 322-331.
3 杜秀丽, 姜晓虎, 孙晨瞳, 等. 基于方向性多重假设检验和信息熵的函数型数据聚类新方法[J]. 南京师大学报: 自然科学版, 2022, 45(4): 1-9.
Du Xiu-li, Jiang Xiao-hu, Sun Chen-tong, et al. A new functional data clustering method based on directional multiple hypothesis test and information entropy[J]. Journal of Nanjing Normal University (Natural Science Edition), 2022, 45 (4): 1-9.
4 王哲昀, 胡文军, 徐剑豪,等. 标签分布熵正则的模糊C均值平衡聚类方法[J]. 控制与决策, 2022, 37(9): 2274-2280.
Wang Zhe-yun, Hu Wen-jun, Xu Jian-hao, et al. Label distribution entropy regularized fuzzy C-means algorithm for balanced clustering[J]. Control and Decision, 2022, 37(9): 2274-2280.
5 景慎艳, 刘松迪. 分块自适应加权改进大规模概率模糊聚类[J]. 火力与指挥控制, 2021, 46(12): 88-93.
Jing Shen-yan, Liu Song-di. Block adaptive weighted improved large-scale probabilistic fuzzy clustering[J]. Fire Control & Command Control, 2021, 46(12): 88-93.
6 Motaki S, Yahyaouy A, Gualous H, et al. A new weighted fuzzy C-means clustering for workload monitoring in cloud datacenter platforms[J]. Cluster Computing, 2021, 24(4): 3367-3379.
7 滕文龙, 丛炳虎, 商云坤, 等. 基于MEA-BP神经网络的建筑能耗预测模型[J]. 吉林大学学报: 工学版, 2021, 51(5): 1857-1865.
Teng Wen-long, Cong Bing-hu, Shang Yun-kun, et al. Modeling of building energy consumption prediction based on MEA-BP neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1857-1865.
8 王民顿, 尚俊娜. 基于CEEMD和改进小波阈值法的钢架结构沉降数据去噪方法[J]. 大地测量与地球动力学, 2022, 42(11): 1191-1195.
Wang Min-dun, Shang Jun-na. Denoising method of steel frame structure settlement data based on CEEMD and improved wavelet threshold method[J]. Journal of Geodesy and Geodynamics, 2022, 42(11): 1191-1195.
9 许承权, 范千. 基于ICEEMD-ICA与MDP准则的变形监测数据去噪方法[J]. 武汉大学学报: 信息科学版, 2021, 46(11): 1658-1665.
Xu Cheng-quan, Fan Qian. Denoising method for deformation monitoring data based on ICEEMD-ICA and MDP principle[J]. Geomatics and Information Science of Wuhan University, 2021, 46 (11): 1658-1665.
10 孙林, 秦小营, 徐久成, 等. 基于K近邻和优化分配策略的密度峰值聚类算法[J]. 软件学报, 2022, 33(4): 1390-1411.
Sun Lin, Qin Xiao-ying, Xu Jiu-cheng, et al. Density peak clustering algorithm based on K-nearest neighbors and optimized allocation strategy[J]. Journal of Software, 2022, 33(4): 1390-1411.
11 魏路, 高磊, 李晋宏, 等. 基于密度峰值聚类的交通控制子区划分方法[J]. 吉林大学学报: 工学版, 2023, 53(1): 124-131.
Wei Lu, Gao Lei, Li Jin-hong, et al. Traffic sub-area division method based on density peak clustering[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 124-131.
12 李志军. 基于Sobol序列和间歇Lévy跳跃的改进蝙蝠算法[J]. 数学的实践与认识, 2021, 51(8): 313-320.
Li Zhi-jun. Improved bat algorithm based on sobol sequence and intermittent lévy jumping[J]. Mathematics in Practice and Theory, 2021, 51(8): 313-320.
[1] Chao XIA,Meng-jia WANG,Jian-yue Zhu,Zhi-gang YANG. Reduced-order modelling of a bluff body turbulent wake flow field using hierarchical convolutional neural network autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 874-882.
[2] Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332.
[3] Hai-long GAO,Yi-bo XU,Kun LIU,Chun-yang LI,Xiao-yu LU. High-speed highway road network short-term traffic flow parameters based on multi-source data fusion prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 155-161.
[4] Shuang LI,Zi-rui LIN,Song YE,Xu LIU,Ji-song ZHAO. Orbital capability evaluation and trajectory reconstruction for launch vehicle with thrust decline [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2245-2253.
[5] Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387.
[6] Feng LYU,Nian LI,Zhuang-zhuang FENG,Yang-hang ZHANG. Method of collaborative filtering recommendation of personalized product-service system based on user [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1935-1942.
[7] Peng-ju LIU. Design of automatic identification algorithm for Internet of Things security situation based on deep neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2121-2126.
[8] Pei-yong LIU,Jie DONG,Luo-feng XIE,Yang-yang ZHU,Guo-fu YIN. Surface defect detection algorithm of magnetic tiles based on multi⁃branch convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1449-1457.
[9] Zhen-hai ZHANG,Kun JI,Jian-wu DANG. Crack identification method for bridge based on BCEM model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426.
[10] Yan-tao TIAN,Fu-qiang XU,Kai-ge WANG,Zi-xu HAO. Expected trajectory prediction of vehicle considering surrounding vehicle information [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 674-681.
[11] Ya-jing YU,Jian GUO,Rong-hao WANG,Wei QIN,Ming-wu SONG,Zheng-rong XIANG. Time⁃varying formation control of multiquadrotor unmanned aerial vehicles based on state observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 871-882.
[12] Shuai-shuai ZHANG,Yan-fang YIN,Lin-jing XIAO,Shuai JIANG. Static gait planning method for quadruped robot based on gate recurrent neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 902-912.
[13] Rong-han YAO,Wen-tao XU,Wei-wei GUO. Drivers' takeover behavior and intention recognition based on factor and long short⁃term memory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 758-771.
[14] Jin-Zhen Liu,Guo-Hui Gao,Hui Xiong. Multi⁃scale attention network for brain tissue segmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 576-583.
[15] Hui-zhen ZHANG,Zheng-kai GAO,Jian-qiang LI,Chen-xi WANG,Yu-biao PAN,Cheng WANG,Jing WANG. Short⁃term passenger flow forecasting of urban rail transit based on recurrent neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 430-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!