Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (8): 2378-2384.doi: 10.13229/j.cnki.jdxbgxb.20230345

Previous Articles     Next Articles

Vehicle trajectory holographic perception method based on laser range sensors

Hui ZHANG(),Xin WEN,Hai-yu CHEN,Shi-chun HUANG   

  1. School of Intelligent Systems Engineering,Sun Yat-sen University,Shenzhen 518107,China
  • Received:2023-04-12 Online:2024-08-01 Published:2024-08-30

Abstract:

To achieve real-time holographic perception of vehicle trajectories on all sections of highways, this paper aims to explore a cost-effective and easily deployable method for holographic perception of vehicle trajectories. Initially, perception devices composed of laser range sensors, distributed along the roadside, are used to collect discrete trajectory profile information of vehicles in real time. Subsequently, by conditional matching, the information from adjacent detection profiles is matched and associated to obtain the sequence of trajectory points for each vehicle. Finally, cubic spline interpolation is used to reconstruct the complete trajectory of the vehicles. Verification shows that the reconstructed vehicle trajectories are fundamentally consistent with their actual trajectories, demonstrating the feasibility of this method in theory.

Key words: vehicle trajectory holographic perception, laser range sensor, trajectory reconstruction, roadside perception devices

CLC Number: 

  • U417.9

Fig.1

Schematic diagram of equipment deployment of holographic perception system"

Fig.2

Schematic diagram of the variation of the relative distance waveform of the detection section"

Fig.3

Scatter plot of velocity versus acceleration for 01 segment data of the HighD dataset"

Fig.4

Relationship between speed and ultimate acceleration"

Table 1

Vehicle operating conditions correspond to matching priority levels"

车辆运行工况优先等级
正常行驶(无换道)一级
正常行驶(有换道)二级
紧急制动(无换道)三级
紧急制动(有换道)四级

Fig.5

Evolution of accuracy with section interval"

Fig.6

Evolution of accuracy rates with section interval by different traffic volumes"

Fig.7

Reconstructed trajectories of vehicles"

Fig.8

Statistics on the average error of multi-vehicle trajectories (HighD-56 Segment)"

Fig.9

Evolution of mean error of multi-vehicle trajectories with section interval"

1 杨洋, 贺昆, 王云鹏, 等. 面向动态交通流的高速公路事故风险模型空间移植研究[J]. 交通运输系统工程与信息, 2023, 23(3): 174-186.
Yang Yang, He Kun, Wang Yun-peng, et al. Spatial transplantation for modeling of freeway traffic crash risk based on dynamic traffic flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(3): 174-186.
2 Han B, Wu Z H, Gu C Y, et al. Developing a regional drive cycle using GPS-based trajectory data from rideshare passenger cars: a case of Chengdu, China[J]. Sustainability, 2021, 13(4): 84152114.
3 魏文辉, 赵祥模, 葛振振. 考虑动力学模型系统误差补偿的智能车GNSS/IMU组合定位算法[J]. 中国公路学报, 2022, 35(9): 185-194.
Wei Wen-hui, Zhao Xiang-mo, Ge Zhen-zhen. An algorithm considering kinematic model systematic error compensation for intelligent vehicle GNSS/IMU integrated positioning[J]. China Journal of Highway and Transport, 2022, 35(9): 185-194.
4 Cao M C, Wang R R, Chen N, et al. A learning-based vehicle trajectory-tracking approach for autonomous vehicles with lidar failure under various lighting conditions[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(2): 1011-1022.
5 Ding N K, Lu Z Y, Jiao N S, et al. Quantifying effects of reverse linear perspective as a visual cue on vehicle and platoon crash risk variations in car-following using path analysis[J]. Accident Analysis & Prevention, 2021, 159: 106215.
6 王俊骅,宋昊,景强,等.基于毫米波雷达组群的全域车辆轨迹检测技术方法[J].中国公路学报,2022,35(12):181-192.
Wang Jun-hua, Song Hao, Jing Qiang, et al. Road-range tracking of vehicle trajectories based on millimeter-wave radar[J]. China Journal of Highway and Transport, 2022, 35(12): 181-192.
7 余志, 廖琼华, 何兆成. 基于车辆身份感知数据的路段轨迹重构方法研究[J]. 交通运输系统工程与信息, 2019, 19(4): 87-93.
Yu Zhi, Liao Qiong-hua, He Zhao-cheng. Vehicle trajectory reconstruction in signalized-link using vehicle identification data[J]. Journal of Transporation Systems Engineering & Information Technology, 2019, 19(4): 87-93.
8 Najman P, Zemcik P.Vehicle speed measurement using stereo camera pair[J].IEEE Transactions on Intelligent Transportation Systems, 2020, 99: 1-9.
9 胡钊政, 李招康, 陶倩文. 基于分布式二维激光测距仪的室内行人检测与跟踪[J]. 吉林大学学报:工学版, 2020, 50(2): 719-729.
Hu Zhao-zheng, Li Zhao-kang, Tao Qian-wen. Indoor pedestrian detection and tracking from distributed two⁃dimensional laser range finders[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 719-729.
10 Krajewski R, Bock J, Kloeker L, et al. The highD dataset: a drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]∥21st International Conference on Intelligent Transportation Systems, Maui, USA, 2018: 2118-2125.
11 Mitschke M, Wallentowitz H. Dynamik der kraftfahrzeuge[M]. Berlin: Springer, 1972.
12 甘林, 赵丹, 徐垒. 两轴汽车制动减速度计算方法[J]. 汽车实用技术, 2018(9): 32-33.
Gan Lin, Zhao Dan, Xu Lei. Calculation method for braking deceleration of two axle vehicles[J]. Automobile Applied Technology, 2018(9): 32-33.
13 郭洪艳, 于文雅, 刘俊, 等. 复杂场景智能车辆车道与速度一体化滚动优化决策[J]. 吉林大学学报:工学版, 2023, 53(3): 693-703.
Guo Hong-yan, Yu Wen-ya, Liu Jun, et al. Integrated moving horizon decision⁃making method for lane and speed of intelligent vehicle in complex scenarios[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(3): 693-703.
14 许小勇, 钟太勇. 三次样条插值函数的构造与Matlab实现[J]. 兵工自动化, 2006(11): 76-78.
Xu Xiao-yong, Zhong Tai-yong. Construction and realization of cubic spline interpolation function[J]. Ordnance Industry Automation, 2006(11): 76-78.
15 李颖, 赵莉, 赵祥模, 等. 基于大货车GPS数据的轨迹相似性度量有效性研究[J]. 中国公路学报, 2020, 33(2): 146-157.
Li Ying, Zhao Li, Zhao Xiang-mo, et al. Effectiveness of trajectory similarity measures based on truck GPS data[J]. China Journal of Highway and Transport, 2020, 33(2): 146-157.
16 Ikotun A M, Ezugwu A E, Abualigah L, et al. K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data[J]. Information Sciences, 2023, 622: 178-210.
[1] Shuang LI,Zi-rui LIN,Song YE,Xu LIU,Ji-song ZHAO. Orbital capability evaluation and trajectory reconstruction for launch vehicle with thrust decline [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2245-2253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .