Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3660-3672.doi: 10.13229/j.cnki.jdxbgxb.20230847

Previous Articles     Next Articles

Application of constrained optimization⁃based adaptive fading memory square root mixed⁃order cubature particle filtering in SINS/GNSS integrated navigation

Ning WANG(),Fan-ming LIU()   

  1. College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2023-07-27 Online:2024-12-01 Published:2025-01-24
  • Contact: Fan-ming LIU E-mail:jerry_wn@hrbeu.edu.cn;hrblfm_407@163.com

Abstract:

To address the issues of particle degradation and the difficulty in selecting the importance density function in particle filtering, a Constrained Optimization-Based Adaptive Fading Memory Square Root Mixed-Degree Spherical Simplex-Radial Cubature Particle Filter (COAFM-MSSRCPF) algorithm was proposed. The advantages of constrained optimization, adaptive fading memory, square root filtering, and Mixed-Degree Spherical Simplex-Radial Cubature Kalman Filtering (MSSRCKF) are combined in this algorithm. By employing the Mixed-Degree Spherical Simplex-Radial sampling criterion, higher accuracy compared to traditional Cubature Kalman Filtering (CKF) and lower computational complexity than High-Degree Cubature Kalman Filtering (HCKF) are achieved. The adaptive fading memory square root strategy is utilized for predicting and updating the covariance matrix, with the weight of current measurement information being enhanced and the influence of historical data reduced. As a result, issues of covariance matrix asymmetry, negative definiteness, and filter divergence are avoided. The noise covariance matrix is dynamically adjusted, and the convergence speed and accuracy of state estimation are improved by constraining the ratio of error covariance to measurement noise covariance. Simulation results demonstrate that the COAFM-MSSRCPF algorithm effectively suppresses filter divergence in SINS/GNSS integrated navigation systems. Filtering accuracy and robustness are significantly improved compared to the Fading Memory Cubature Particle Filtering (FMCPF) and traditional Cubature Particle Filtering (CPF) algorithms.

Key words: integrated navigation positioning, constrained optimization, adaptive fading memory, square root filtering, mixed-degree, spherical simplex-radial cubature kalman filtering, particle filtering

CLC Number: 

  • TP2

Fig.1

Tightly coupled navigation mode"

Fig.2

COAFM-MSSRCKF filtering algorithm flowchart"

Fig.3

State estimation errors under different α values"

Fig.4

COAFM-MSSRCPF algorithm flowchart"

Table 1

Number of sampling points and simulation time for three filtering algorithms"

算法(n=17)采样点数平均仿真时间/s
CKF2n77.36
HCKF2n2+1992.15
MSSRCKF2n+379.68

Fig.5

Aircraft trajectory"

Fig.6

Uncorrected gyroscope bias in SINS"

Fig.7

Uncorrected accelerometer bias in SINS"

Fig.8

Gyroscope bias in SINS after MSSRCKF filter correction"

Fig.9

Accelerometer bias in SINS after MSSRCKF filter correction"

Fig.10

Latitude position errors"

Fig.11

Longitude position errors"

Fig.12

Latitude position errors"

Fig.13

Longitude position errors"

Fig.14

Altitude position errors"

Table 2

Comparison of latitude longitude and altitude positioning errors"

滤波算法仿真时间/s最大纬度误差/m最大经度误差/m最大高度误差/m
COAFM-MSSRCPF600~1 2002.502.463.20
FMCPF600~1 2004.605.106.00
CPF600~1 2007.208.009.60
1 Zhao X, Li jian-li, Yan Xun-liang,et al. Robust adaptive cubature Kalman filter and its application to ultra-tightly coupled SINS/GPS navigation system[J]. Sensors, 2018, 18(7): No.2352.
2 Li L, Wang J, Chen Z, et al. Application of adaptive robust Kalman filter based on MCC for SINS/GPS integrated navigation[J]. Sensors, 2023, 23(19): No.8131.
3 Wang Lian-sheng, Xia Yuan-qing. Mars entry navigation with uncertain parameters based on desensitized extended Kalman filter[J]. IEEE Transactions on Industrial Informatics, 2015, 11(5): 998-1005.
4 Li D, Ji D, Liu J, et al. A multi-model EKF integrated navigation algorithm for deep water AUV[J]. Int J Adv Robot Syst, 2016, 13(1): 3.
5 Yazdkhasti S, Sasiadek J Z, Ulrich S. Performance enhancement for GPS/INS fusion by using a fuzzy adaptive unscented Kalman filter[C]∥Proceedings of the 21st International Conference on Methods and Models in Automation and Robotics (MMAR),Miedzyzdroje, Poland, 2016: 1194-1199.
6 Li K L, Chang L B, Hu B Q,et al. A variational Bayesian-based unscented Kalman filter with both adaptivity and robustness[J]. : IEEE Sensors Journal, 2016, 16(18): 6966-6976.
7 Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans Autom Control, 2009, 54(6): 1254-1269.
8 Xu B, Zhang P, Wen H, et al. Stochastic stability and performance analysis of cubature Kalman filter[J]. Neurocomputing, 2016, 186: 218-227.
9 Chandra B P K, Gu D, Postlethwaite I. Square root cubature information filter[J]. IEEE Sens J, 2013, 13(2): 750-758.
10 Wang D, Lv H, Wu J. Augmented cubature Kalman filter for nonlinear RTK/MIMU integrated navigation with non-additive noise[J]. Measurement, 2017, 97: 111-125.
11 Cui Bing-bo, Chen Xi-yuan, Tang Xin-hua. Improved cubature Kalman filter for GNSS/INS based on transformation of posterior sigma-points error[J]. IEEE Trans Signal Process, 2017, 65(11): 2975-2987.
12 Jiang C, Chen S, Bo Y, et al. Performance improvement of GPS/SINS ultra-tightly integrated navigation system utilizing a robust cubature Kalman filter[J]. J Aeronaut Astronaut Aviat, 2017, 49(1): 49-55.
13 Benzerrouk H, Nebylov A. Robust nonlinear filtering applied to integrated navigation system INS/GNSS under non-Gaussian measurement noise effect[J]. IFAC Proc Vol, 2012, 45(1): 202-207.
14 Jia Bin, Xin Ming, Cheng Yang.High-degree cubature Kalman filter[J].Automatica, 2013, 49(2): 510-518.
15 Cui Bing-bo, Wei Xin-hua, Chen Xi-yuan, et al. Improved high-degree cubature Kalman filter based on resampling-free sigma-point update framework and its application for inertial navigation system-based integrated navigation[J]. Aerosp Sci Technol, 2021(117): No.106905.
16 郝顺义, 卢航, 魏翔, 等. 简化高阶强跟踪容积卡尔曼滤波及其在组合导航中的应用[J]. 控制与决策, 2019, 34(10): 2105-2114.
Hao, Shun-yi, Lu Hang, Wei Xiang, et al. Simplified high-order strong tracking cubature kalman filter and its application in integrated navigation[J]. Control and Decision, 2019, 34(10): 2105-2114.
17 Quan L, Chang R, Guo C. Vehicle state and road adhesion coefficient joint estimation based on high-order cubature Kalman algorithm[J]. Applied Sciences, 2023, 13(19): No.10734.
18 Wang S, Feng Y, Duan S, et al. Spherical simplex-radial cubature Kalman filter[J]. IEEE Signal Process Lett, 2014, 21(4): 405-408.
19 Cui B, Wei X, Chen X, et al. Improved high-degree cubature Kalman filter based on resampling-free sigma-point update framework and its application for inertial navigation system-based integrated navigation[J]. Aerosp Sci Technol, 2021, 117(3): No.106905.
20 徐晓苏, 董亚, 童金武, 等.基于5阶球面最简相径的改进型容积卡尔曼滤波在SINS/DVL组合导航中的应用[J]. 中国惯性技术学报, 2017, 25(3): 343-348.
Xu Xiao-su, Dong Ya, Tong Jin-wu, et al. Application of an improved fifth-order spherical simplex-radial cubature kalman filter in SINS/DVL Integrated navigation[J]. Journal of Chinese Inertial Technology, 2017, 25(3): 343-348.
21 Li N, Ma W, Man W, et al. Multiple robust high-degree cubature Kalman filter for relative position and attitude estimation of satellite formation[J]. J Navig, 2019, 72(5): 1254-1274.
22 Wang S, Fang Y, Duan S, et al. Mixed-degree spherical simplex-radial cubature Kalman filter[J]. Math Probl Eng, 2017, 2017: 1-9.
23 Dang L, Chen B, Huang Y, et al. Cubature Kalman filter under minimum error entropy with fiducial points for INS/GPS integration[J]. Acta Autom Sin, 2022, 9(3): 16.
24 高怡, 高社生, 吴佳鹏. 衰减记忆平方根UPF算法及其在组合导航中的应用[J]. 中国惯性技术学报,2014, 22(6): 777-781.
Gao Yi, Gao She-sheng, Wu Jia-Peng. fading memory square root UPF algorithm and its application in integrated navigation[J]. Journal of Chinese Inertial Technology, 2014, 22(6): 777-781.
25 杨旺明. 衰减记忆平方根容积卡尔曼滤波及其应用[J].计算机与数字工程, 2018, 46(3): 471-474.
Yang Wang-ming. Fading memory square root cubature Kalman filter and its application[J]. Computer and Digital Engineering, 2018, 46(3): 471-474.
26 Ning X, Huang P. Adaptive points range square-root cubature Kalman filter for Mars approach navigation[C]∥Proceedings of the 33rd Chinese Control Conference,Nanjing, China,2014: 903-908.
27 李荣攀, 西勤, 刘松林. 改进的衰减记忆UKF算法在伪距定位中的研究[J]. 测绘与空间地理信息, 2017, 40(6):30-32, 36.
Li Rong-pan, Xi Qin, Liu Song-lin. Research on an improved fading memory UKF algorithm in pseudorange positioning[J]. Geomatics & Spatial Information Technology, 2017, 40(6): 30-32, 36.
28 Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans Signal Process, 2002, 50(2): 174-188.
29 李星星, 纪元法, 孙希延, 等. 一种基于约束的衰减记忆容积卡尔曼滤波方法[P].中国:CN202311516111.3, 2024-02-13.
30 Shen Z, Tang Y. A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions[J]. J Adv Model Earth Syst, 2015, 7(1): 50-66.
31 葛磊. 容积卡尔曼滤波算法研究及其在导航中的应用[D].哈尔滨: 哈尔滨工程大学自动化学院, 2013.
Ge Lei. Research on cubature Kalman filtering algorithm and its application in navigation[D]. Harbin: College of Automation, Harbin Engineering University, 2013.
32 van Nguyen N, Duc T C, Tran D T. Enhanced accuracy navigation solution of an integrated SINS/GPS system using a simple and effective adaptive Kalman filter[J/OL]. [2023-07-12].
33 Yang Y, Gao W. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80: 177-183.
34 Gao W, Yang Y, Cui X, et al. Application of adaptive Kalman filtering algorithm in IMU/GPS integrated navigation system[J]. Geo-spatial Information Science, 2007, 10(1): 22-26.
35 王满林. 自适应衰减记忆UKF算法在三维水下目标跟踪中的应用[J].四川兵工学报, 2012, 33(5): 44-47.
Wang man-lin. Application of adaptive fading memory ukf algorithm in 3Dunderwater target tracking[J]. Journal of Sichuan Ordnance, 2012, 33(5): 44-47.
36 迟凤阳, 孙枫, 徐博. 迭代容积粒子滤波算法在SINS初始对准中的应用[J]. 传感器与微系统, 2013,32(7): 136-140.
Chi Feng-yang, Sun Feng, Xu Bo. Application of iterative cubature particle filter algorithm in SINS initial alignment[J]. Transducer and Microsystem Technologies, 2013, 32(7): 136-140.
37 迟凤阳. 水下航行器组合导航定位技术研究[D].哈尔滨: 哈尔滨工程大学自动化学院, 2015.
Chi Feng-yang. Research on integrated navigation and positioning technology for underwater vehicles [D]. Harbin: College of Automation, Harbin Engineering University, 2015.
38 徐晓苏, 田泽鑫, 刘义亭, 等. 基于改进型CKF的SINS初始对准方法[J]. 华中科技大学学报: 自然科学版, 2016, 44(1): 81-86.
Xu Xiao-su, Tian Ze-xin, Liu Yi-ting, et al. SINS initial alignment method based on an improved CKF [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(1): 81-86.
39 Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans Autom Control, 2009, 54(6): 1254-1269.
40 Wang S Y, Feng Y L, Duan S K, et al. Mixed-degree spherical simplex-radial cubature Kalman filter[J]. Mathematical Problems in Engineering, 2017, 2017: No. 6969453.
[1] XIA Li-hong, DENG Zhao-xiang. Optimal design of electromechanical brake actuator through an integrated mechatronic approach [J]. 吉林大学学报(工学版), 2018, 48(4): 998-1007.
[2] DONG Ning,WANG Yu-ping. Guiding multi-objective differential evolution algorithm for constrained optimization [J]. 吉林大学学报(工学版), 2015, 45(2): 569-575.
[3] KONG Yun-bo, FENG Xin-xi, LU Chuan-guo, LIU Zhen-tao. Quasi-Monte Carlo particle filter algorithm based on sigma point H [J]. 吉林大学学报(工学版), 2014, 44(6): 1831-1837.
[4] DAI Lian-jun, TANG Tao, CAI Bai-gen. Cycle slip detection for BeiDou satellite based on adaptive particle filtering [J]. 吉林大学学报(工学版), 2013, 43(04): 1146-1152.
[5] Kou Xiao-Li,Liu San-yang . Particle swarm algorithm based on simulated annealing to solve constrained optimization [J]. 吉林大学学报(工学版), 2007, 37(01): 136-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .