Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3646-3652.doi: 10.13229/j.cnki.jdxbgxb.20231215

Previous Articles     Next Articles

Third order static error free damping algorithm for long endurance inertial navigation under periodic oscillation suppression constraints

Bo-fan GUAN(),Si-hai LI,Qiang-wen FU   

  1. School of Automation,Northwestern Polytechnical University,Xi 'an 710129,China
  • Received:2023-12-13 Online:2024-12-01 Published:2025-01-24

Abstract:

Inertial navigation system will encounter various disturbances in the actual environment, such as vibration, temperature change, external magnetic field, etc., and it is easy to accumulate large errors under long-term operation, making the stability and accuracy of the navigation system low. For this reason, a third-order non-static damping algorithm for long endurance inertial navigation under the constraint of periodic oscillation suppression is studied. Kalman filter is used to estimate the periodic oscillation error, error compensation mechanism is introduced to suppress the periodic oscillation error, fuzzy control is used to realize damping control, navigation parameters are modified, and the research of third-order non-static damping algorithm for inertial navigation is completed. The experimental verification shows that: The error of navigation parameters under the application of this algorithm is relatively smaller. With the passage of time, the error suppression effect of the algorithm is gradually enhanced, and the error is smaller and smaller. The position error is reduced to 0.15 m, the speed error is reduced to 0.10 m/s, and the attitude error is reduced to 0.06°. It shows that the algorithm provides an effective solution to improve the accuracy and stability of long endurance inertial navigation system.

Key words: periodic oscillation suppression, long endurance, inertial navigation, third order no static difference damping

CLC Number: 

  • TP21.66

Fig.1

Schematic diagram of third-order error suppression damping algorithm"

Table.1

Related parameter settings table"

参数数值
陀螺仪零偏稳定性/[(°)·h-10.01
陀螺常值漂移误差/[(°)·h-10.02
速度计零偏稳定性/g5×10-5
总时长/h24
采样频率/Hz50
初始位置/(°)(0,0)
水平回路的衰减系数0.05
水平回路的阻尼比0.63
加速度初始误差/(m·s-28.63×10-0.02
速度初始误差(m·s-10.05

Fig.2

Periodic oscillation error"

Table 2

Damping coefficient"

参数数值
速度回路的阻尼系数1.63
位置回路的阻尼系数0.08
姿态回路的阻尼系数0.63

Table 3

Analysis of the application effect of damping algorithm"

算法时间段/ h位置误差/m速度误差/(m·s-1姿态误差/(°)
本文算法0~50.230.150.12
6~150.180.140.09
16~240.150.100.06
文献[3]算法0~50.850.320.36
6~150.740.370.47
16~240.770.390.62
文献[4]算法0~50.630.400.41
6~150.590.470.53
16~240.600.470.57
1 梁娜, 丁丹. SINS/GPS组合导航系统研究[J].计算机仿真, 2022, 39(12):34-37.
Liang Na, Ding Dan. Research of the SINS/GPS integrated navigation system[J]. Computer Simulation, 2022, 39 (12): 34-37.
2 郝诗文, 周召发, 张志利, 等.垂线偏差对惯导系统位置误差的影响分析[J].仪器仪表学报, 2023, 44(7):74-84.
Hao Shi-wen, Zhou Zhao-fa, Zhang Zhi-li, et al. Analysis of the inertial navigation system positioning error caused by deflection of the vertical[J]. Chinese Journal of Scientific Instrument, 2023, 44 (7): 74-84.
3 李冬毅, 覃方君, 黄春福, 等.基于LM算法的惯导自主阻尼算法[J]. 传感器与微系统, 2023, 42(6):112-115.
Li Dong-yi, Qin Fang-jun, Huang Chun-fu, et al. Inertial navigation autonomous damping algorithm based on LM algorithm[J]. Transducer and Microsystem Technologies, 2023, 42(6): 112-115.
4 刘潺, 吴文启, 冯国虎, 等.法向量位置模型下的水下长航时惯性导航阻尼算法[J]. 中国惯性技术学报, 2021,29(6): 709-716.
Liu Chan, Wu Wen-qi, Feng Guo-hu, et al. Damping algorithm for long-endurance underwater INS based on n-vector model[J]. Journal of Chinese Inertial Technology, 2021, 29(6): 709-716.
5 朱九鹏, 李安, 覃方君, 等. 基于Kalman滤波的惯导系统重力扰动阻尼抑制方法[J]. 火力与指挥控制, 2022, 47(9): 37-42.
Zhu Jiu-peng, Li An, Qin Fang-jun, et al. Damping suppression method for gravity disturbance based on kalman filter in inertial navigation system[J]. Fire Control & Command Control, 2022, 47(9): 37-42.
6 冯国虎, 吴文启, 曾观林. 基于虚拟圆球法向量位置模型的航海惯导全球容错阻尼算法[J].中国惯性技术学报, 2022, 30(5): 576-581, 588.
Feng Guo-hu, Wu Wen-qi, Zeng Guan-lin. Global fault tolerant damping method of marine inertial navigation based on virtual spherical n-vector model[J]. Journal of Chinese Inertial Technology, 2022,30(5): 576-581, 588.
7 常海林, 李洁, 潘常春, 等.基于优化算法的摩擦阻尼器参数设计新方法[J]. 工业建筑, 2023, 53(8):154-160.
Chang Hai-lin, Li Jie, Pan Chang-chun, et al. A new method for parameter optimization of friction dampers based on optimization algorithm[J]. Industrial Construction, 2023, 53(8): 154-160.
8 陈丰收, 吕述晖, 李安琪. 基于快速非支配排序遗传算法的阻尼器多目标优化布置[J]. 世界地震工程, 2023, 39(1): 109-117.
Chen Feng-shou, Shu-hui Lyu, Li An-qi. Multi-objective optimal arrangement of dampers based on nondominated sorting genetic algorithm-II[J]. World Earthquake Engineering, 2023, 39(1): 109-117.
9 袁彦红, 王北超, 范蕾懿, 等. 卫星姿控多推力器高速率阻尼算法及验证[J].航天控制, 2022, 40(5):15-21.
Yuan Yan-hong, Wang Bei-chao, Fan Lei-yi, et al. High-velocity damping algorithms and validation for multiple jets of a satellite[J]. Aerospace Control, 2022, 40(5): 15-21.
10 张香成, 徐宏辉, 赵军, 等. 基于改进遗传算法的磁流变阻尼器多目标空间优化布置[J]. 湖南大学学报:自然科学版, 2023, 50(5): 85-94.
Zhang Xiang-cheng, Xu Hong-hun, Zhao Jun, et al. Multi-objective spatial optimization arrangement of magnetorheological dampers based on improved genetic algorithm[J]. Journal of Hunan University (Natural Sciences), 2023, 50(5): 85-94.
11 吴迪, 王影, 华国武, 等. IPFC有源阻尼模型预测电流控制优化算法研究[J]. 电力电子技术, 2022, 56(4):7-11.
Wu Di, Wang Ying, Hua Guo-wu, et al. Research on optimal algorithm of active damping model predictive current control of IPFC[J]. Power Electronics, 2022, 56 (4): 7-11.
12 胡国良, 齐浩楠, 喻理梵, 等.基于遗传算法的混合流动式磁流变阻尼器优化设计[J].重庆交通大学学报:自然科学版, 2022, 41(5): 157-166.
Hu Guo-liang, Qi Hao-nan, Yu Li-fan, et al. Optimal design of hybrid fluid flow magnetorheological damper based on genetic algorithm[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(5): 157-166.
13 李戈, 毛崎波, 吴彬. 基于遗传算法的电磁分流阻尼参数优化[J].噪声与振动控制, 2021, 41(3): 9-13, 50.
Li Ge, Mao Qi-bo, Wu Bin. Parameter optimization for electromagnetic shunt dampers based on genetic algorithm[J]. Noise and Vibration Control, 2021, 41(3): 9-13, 50.
14 焦浩鑫, 丁肇伟, 陈龙珠. 基于复阻尼模型水平剪切型结构的时域解析算法[J]. 地震工程学报, 2021, 43(3): 720-727.
Jiao Hao-xin, Ding Zhao-wei, Chen Long-zhu. A Time-domain analytical method for horizontal shear structures based on the complex damping model [J]. China Earthquake Engineering Journal, 2021, 43 (3): 720-727.
15 曾观林, 冯国虎. 水下SINS/DVL组合导航误差抑制综述[J].现代防御技术, 2023, 51(4): 25-35.
Zeng Guan-lin, Feng Guo-hu. Review on the error suppression of underwater SINS/DVL integrated navigation[J]. Modern Defence Technology, 2023, 51 (4): 25-35.
16 刘潺, 吴文启, 冯国虎, 等. 法向量位置模型下旋转调制惯导极区综合校正算法[J]. 中国惯性技术学报, 2023, 31(2): 107-113.
Liu Chan, Wu Wen-qi, Feng Guo-hu, et al. Comprehensive calibration algorithm for rotational inertial navigation system based on n-vector model in polar regions[J]. Journal of Chinese Inertial Technology, 2023, 31(2): 107-113.
[1] HAO Yan-ling, MU Hong-wei. Application of adaptive SRCDKF in SINS initial alignment with large azimuth misalignment [J]. 吉林大学学报(工学版), 2013, 43(01): 261-266.
[2] ZHANG Ze, DUAN Guang-Ren. New sculling error compensation algorithm of SINS [J]. 吉林大学学报(工学版), 2010, 40(05): 1460-1464.
[3] ZHANG Rong-hui|WANG Hai-we2|JIA Hong-guang|CHEN Tao|ZHANG Yue. Disturbance compensate control algorithm for strapdown inertial navigation system in initial alignment [J]. 吉林大学学报(工学版), 2010, 40(03): 811-0815.
[4] ZHANG Tao, XU Xiao-Su. Moving base alignment of shipborne strapdown system based on wavelet and AI technology [J]. 吉林大学学报(工学版), 2010, 40(02): 549-0553.
[5] LIU Ming, LIU Yu, SU Bao-ku . Application of improved twostage Kalman filter in error model identification of inertial navigation platform [J]. 吉林大学学报(工学版), 2009, 39(03): 819-0823.
[6] Guan Xin,Yan Dong,Gao Zhenhai. Vehicle Movement State Test System Based on INS/RTKDGPS [J]. 吉林大学学报(工学版), 2006, 36(01): 14-0019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .