Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3443-3449.doi: 10.13229/j.cnki.jdxbgxb.20231188

Previous Articles     Next Articles

Power demand control of composite power supply for idle start stop hybrid electric vehicles

Fang-yun LI(),Rong XIA,Xiao-min XI   

  1. Department of Information Electronics,Science and Technology College of NCHU,Jiujiang 332020,China
  • Received:2023-11-02 Online:2024-12-01 Published:2025-02-26

Abstract:

In order to improve the comprehensive work efficiency and energy supply stability of the automotive composite power supply, a power demand control method of the idle start stop hybrid electric vehicle composite power supply was proposed. The control requirements of the composite power supply was analyzed through its composition, and the states of batteries and supercapacitors were clarified. According to the dynamic calculation of the relationship between the maximum speed of a hybrid vehicle and the supercapacitor, the input state compensation amount and the actual supercapacitor were used to obtain the maximum limited output power. By using the recursive method of multi-scale decomposition of discrete sequences, the scale space was gradually decomposed, and the decomposition and reconstruction coefficients were calculated to achieve the power demand control of hybrid electric vehicle composite power supply. The experimental results show that after using the proposed method for control, the capacitance curve remains at around 0.60 F, the current fluctuation amplitude is -50~50 A, and the power fluctuation amplitude is relatively gentle, with a voltage between 200~220 V. This indicates that the proposed method can stably control the power demand of the idle start stop hybrid electric vehicle composite power supply, reduce the energy consumption of the entire vehicle, and ensure maximum resource utilization.

Key words: idle start stop, hybrid electric vehicles, composite power supply, demand power control, supercapacitors

CLC Number: 

  • TP202

Fig.1

Composition breakdown of composite power supply"

Fig.2

Composite energy storage model"

Table 1

Parameters of idle start stop hybrid electric vehicle"

名称数值
电机参数型号永磁49 kW
最大电流/A400
最大功率/104 W4.9
车身参数轴距/m22.34
质量/kg1 225
质心高/m20.5
迎风面积/m22.13
质心到前轴距离/m1.404
质心到后轴距离/m0.936
风阻系数0.335
蓄电池电池型号NiMH45 A·h
峰值功率/kW3.3
额定容量/(A·h)45
额定能量/(W·h)598
发动机参数发动机型号Toyota8 A
最大功率/104 W6.3
最大转矩/(N·m)110
排量/L1.3
超级电容电容型号SU0100P-0027V-1CA
峰值功率/W207
额定能量/J360
额定容量/F100
其他参数不同档位下变速器的传动比3.928 2.333 1.456 1.000 0.851
电子设备功率/W700

Fig.3

Power control effect of composite power supply"

Fig.4

Changes in energy consumption of hybrid electric vehicles"

1 Qi W, Yinsheng L.Research on a new power distribution control strategy of hybrid energy storage system for hybrid electric vehicles based on the subtractive clustering and adaptive fuzzy neural network[J].Cluster computing,2022, 25(6): 4413-4422.
2 初亮, 董力嘉, 许楠, 等. 基于开绕组电机的增程式电动车动力系统构型及其功率分配[J]. 吉林大学学报: 工学版, 2021, 51(1): 72-82.
Chu Liang, Dong Li-jia, Xu Nan, et al. Powertrain configuration and power distribution of extended electric vehicle based on open winding motor[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 72-82.
3 李正辉, 贠海涛, 胡帅, 等. 燃料电池汽车混合动力系统怠速启停控制研究[J].电源技术, 2021, 45(2):199-202.
Li Zheng-hui, Yun Hai-tao, Hu Shuai, et al. Research on idle start and stop control of fuel cell vehicle hybrid power system[J]. Chinese Journal of Power Sources, 2021, 45(2): 199-202.
4 颜湘武, 彭维锋, 贾焦心, 等.基于转速自适应控制的旋转潮流控制器功率调节方法研究[J].中国电机工程学报,2023,43(13):4971-4987.
Yan Xiang-wu, Peng Wei-feng, Jia Jiao-xin, et al. Research on power regulation method of rotary power flow controller based on speed adaptive control[J]. Proceedings of the CSEE, 2023, 43(13): 4971-4987.
5 杨玉龙, 王甜甜, 陈祥, 等.考虑新能源消纳的电采暖集群多功率级控制策略研究[J].电力系统保护与控制, 2022, 50(10): 20-30.
Yang Yu-long, Wang Tian-tian, Chen Xiang, et al. Multi-power level control strategy of an electric heating cluster considering new energy consumption[J]. Power System Protection and Control, 2022,50(10): 20-30.
6 Liu H, Li D, Chen G, et al. Research on power coupling characteristics and acceleration strategy of electro-hydrostatic hydraulic hybrid power system[J].Proceedings of the Institution of Mechanical Engineers, Part I. Journal of Systems and Control Engineering, 2021, 235(8): 1445-1459.
7 汪伟, 罗金, 王汝佳, 等. 纯电动汽车工况识别和能量控制策略研究[J].机械科学与技术, 2021, 40(9): 1444-1450.
Wang Wei, Luo Jin, Wang Ru-jia, et al. Research on operating condition identification and energy control strategy of pure electric vehicle [J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1444-1450.
8 石泽华, 付主木, 陶发展, 等.网联环境下的燃料电池混合动力汽车能量管理[J]. 河南科技大学学报: 自然科学版, 2023, 44(1): 28-35, 6.
Shi Ze-hua, Fu Zhu-mu, Tao Fa-zhan, et al. Energy management of fuel cell hybrid electric vehicle in networked enviroment [J]. Journal of Henan University of Science and Technology:Natural Science, 2023,44(1): 28-35, 6.
9 施德华, 容香伟, 汪少华, 等.基于功率比的混合动力汽车模糊自适应等效燃油消耗最小策略研究[J].西安交通大学学报, 2022, 56(1): 12-21.
Shi De-hua, Rong Xiang-wei, Wang Shao-hua, et al. Fuzzy adaptive equivalent consumption minimization strategy for hybrid electric vehicle based on power ratio[J]. Journal of Xi'an Jiaotong University, 2022, 56(1): 12-21.
10 王晓侃, 王琼. 城轨列车车载储能系统功率需求的动态模糊优化控制方法研究[J]. 中南民族大学学报:自然科学版, 2023, 42(4): 564-570.
Wang Xiao-kan, Wang Qiong. Power demand of on-board composite energy storage system for urban rail trains based on dynamic fuzzy optimal control method[J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2023,42(4): 564-570.
11 袁志宝, 许海平, 原增泉. 大功率LD电源高稳定电流控制技术研究[J].电力电子技术, 2022, 56(3): 47-50.
Yuan Zhi-bao, Xu Hai-ping, Yuan Zeng-quan. Research on high stable current control technology for high power LD power supply[J]. Power Electronics, 2022, 56(3): 47-50.
12 任鹏, 李春兰, 王长云, 等. 混合微电网的功率分配策略及PI参数整定[J].江苏大学学报: 自然科学版,2022, 43(3): 325-331.
Ren Peng, Li Chun-lan, Wang Chang-yun, et al. Power distribution strategy and PI parameter regulation of hybrid microgrid[J]. Journal of Jiangsu University (Natural Science Edition), 2022, 43(3): 325-331.
13 肖哲, 王宇宁, 赵国强, 等. 燃料电池汽车动力系统匹配及能量管理[J]. 江苏大学学报: 自然科学版,2024,45(3): 273-280.
Xiao Zhe, Wang Yu-ning, Zhao Guo-qiang, et al. Power system matching and energy management of fuel cell vehicle[J]. Journal of Jiangsu University (Natural Science Edition), 2024,45(3): 273-280.
14 孙闫, 夏长高, 尹必峰, 等. 燃料电池电动汽车的能量管理[J]. 吉林大学学报: 工学版, 2022, 52(9):2130-2138.
Sun Yan, Xia Chang-gao, Yin Bi-feng, et al. Energy management strategy of fuel cell electric vehicles[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 2130-2138.
15 林涛, 赵伊, 冯嘉冀. 基于特征分解的短期电负荷组合预测模型研究[J]. 计算机仿真, 2022, 39(9): 91-95, 251.
Lin Tao, Zhao Yi, Feng Jia-ji. Research on short-term electric load combination predictionmodel based on feature decomposition[J]. Computer Simulation,2022, 39(9): 91-95, 251.
16 韩爱国, 宋福豪, 田韶鹏, 等. 燃料电池系统建模与供气系统控制方法[J].江苏大学学报: 自然科学版,2024, 45(2): 147-153.
Han Ai-guo, Song Fu-hao, Tian Shao-peng,et al.Modeling of fuel cell system and control method of air supply systemJournal of Jiangsu University (Natural Science Edition), 2024, 45(2): 147-153.
[1] ZENG Xiao-hua, JIANG Yuan-de, SONG Da-feng, PENG Yu-jun, YANG Nan-nan. Integration of fault diagnosing algorithm into energy management strategy for hybrid electric vehicle [J]. 吉林大学学报(工学版), 2016, 46(4): 1030-1037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!