Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (2): 741-747.doi: 10.13229/j.cnki.jdxbgxb.20240037

Previous Articles    

Lightweight detection algorithm for lossless transcoding and heavy compression of massive digital media videos

Hua-song DONG(),Yuan-feng LIAN   

  1. College of Artificial Intelligence,China University of Petroleum (Beijing),Beijing 102249,China
  • Received:2024-01-11 Online:2025-02-01 Published:2025-04-16

Abstract:

To timely obtain video quality, a lightweight detection algorithm for lossless transcoding and heavy compression of massive digital media videos is proposed. This method divides video encoded frames into several encoding tree blocks based on high-performance video encoding, and optimizes video rate distortion to ensure video quality during the partitioning process while minimizing computational and storage costs, achieving a certain degree of lightweighting; Based on this, pixel values, color space, and motion vectors are extracted from each image frame in the video, and the extracted results are compared and analyzed with the initial video pixel values, color features, and motion vectors to determine whether the quality of the re compressed video is damaged, achieving lightweight detection of the re compressed video. The experimental results show that when using the proposed method for compressed video quality detection, the color component extraction results of the compressed video image are consistent with the actual color component of the compressed video image. Moreover, when the number of videos reaches 5000, the detection result of the number of false positives in video detection is 3, further demonstrating the high detection performance and good effect of the proposed method.

Key words: digital media video, lossless transcoding and recompression, lightweight testing, video frame division, color feature extraction

CLC Number: 

  • TP306

Fig.1

Division of encoding tree units for a certain video frame in compressed video"

Fig.2

Image frame"

Fig.3

Encoding Tree unit corresponding quadtree"

Fig.4

Test results of pixel distribution in compressed video images"

Fig.5

Test results of global color components in video image frames using different methods"

Table 1

Actual detection performance testing of compressed videos using different methods"

视频数量/个视频检测误报数量检测结果/个
本文方法文献[4]方法文献[5]方法
1 000000
2 000001
3 000123
4 000156
5 0003810
1 马彦博, 李琳, 陈缘, 等. 基于时空融合的多帧压缩视频增强方法[J]. 图学学报, 2022, 43(4): 651-658.
Ma Yan-bo, Li Lin, Chen Yuan, et al. Multi-frame compressed video enhancement based on spatio-temporal fusion[J]. Journal of Graphics, 2022, 43(4): 651-658
2 肖尚武, 胡瑞敏, 肖晶. NB-IoT环境下基于混合分辨率人脸监控视频压缩方法[J]. 计算机应用与软件, 2022, 39(2): 150-156.
Xiao Shang-wu, Hu Rui-min, Xiao Jing. Face-oriented surveillance video compression method based on hybrid resolution in nb-iot environment[J]. Computer Applications and Software,2022,39(2):150-156.
3 王金伟, 胡冰涛, 张家伟, 等. 基于解压缩模块的JPEG同步重压缩检测[J].电子学报, 2023, 51(4):850-859.
Wang Jin-wei, Hu Bing-tao, Zhang Jia-wei, et al. Jpeg synchronous double compression detection based on decompression module[J]. Acta Electronica Sinica, 2023,51(4): 850-859.
4 孙磊, 张洪蒙, 毛秀青, 等.基于超分辨率重建的强压缩深度伪造视频检测[J].电子与信息学报, 2021,43(10): 2967-2975.
Sun Lei, Zhang Hong-meng, Mao Xiu-qing, et al. Super-resolution reconstruction detection method for deepfake hard compressed videos[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2967-2975.
5 Paulraj R J, Vimala M, Govindamoorthi P. An optimal weighted HEVC coding for video compression[J]. Multimedia Tools and Applications, 2021, 80(17): 25389-25409.
6 Naveen C V R. Blind quality scalable video compression algorithm for low bit-rate coding[J]. Multimedia Tools and Applications, 2022, 81(23): 33715-33730.
7 惠超, 蒋林, 朱筠, 等. HEVC中分像素插值算法的动态可重构实现[J]. 计算机工程与设计, 2022, 43(3): 764-770.
Hui Chao, Jiang Lin, Zhu Yun, et al. Dynamic reconfigurable implementation of sub-pixel interpolation algorithm in HEVC[J]. Computer Engineering and Design,2022,43(3):764-770.
8 宋宇波, 马文豪, 胡爱群, 等. 一种基于像素值偏移编解码技术的屏摄隐通道研究[J]. 信息网络安全, 2021, 21(4): 31-38.
Song Yu-bo, Ma Wen-hao, Hu Ai-qun, et al. A covert channel communication method based on pixel offset encoding and decoding technique[J]. Netinfo Security, 2021,21 (4): 31-38.
9 张霞, 向军, 张宁, 等. 采用改进的小波和颜色矩的色纺面料图像检索[J].丝绸, 2021, 58(12): 34-39.
Zhang Xia, Xiang Jun, Zhang Ning, et al. Image retrieval of colored spun fabrics using modified wavelet transform method and color moments[J]. Journal of Silk, 2021,58(12): 34-39.
10 张梓婷, 韩金玉, 张东辉, 等. 基于颜色矩的土豆、玉米、苹果叶片病害异常检测[J].浙江农业学报,2022,34(10): 2230-2239.
Zhang Zi-ting, Han Jin-yu, Zhang Dong-hui, et al. Anomaly detection of potato,maize and apple leaf diseases based on color moments[J]. Zhejiang Agricultural journal, 2022, 34(10): 2230-2239.
11 叶裴雷, 张大斌. 高速运动目标特征关联检测模型仿真[J]. 计算机仿真,2023,40(4):208-212.
Ye Pei-lei, Zhang Da-bin. Simulation of feature association detection model for high-speed moving targets[J]. Computer Simulation, 2023, 40(4): 208-212.
[1] Dan-tong OUYANG,Rui SUN,Xin-liang TIAN,Li-ming ZHANG,Ping-ping LIU. Approach for generating minimal fault detectability and isolability set in dynamic system based on partial maximum satisfiability problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1163-1173.
[2] Dan-tong OU-YANG,Rui SUN,Xin-liang TIAN,Bo-han GAO. Set blocking⁃based approach to sensor selection in uncertain systems [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 547-554.
[3] HUANG Yong-ping, CHANG Peng-fei, GUO Kai, JIN Yu-shan. Method and implementation of software debugging based on event injection [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 373-376.
[4] Zhao Xiang-fu,Ouyang Dan-tong . New methods for deriving all minimal conflict sets in modelbased diagnosis [J]. 吉林大学学报(工学版), 2007, 37(02): 413-0418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!