| [1] | Wang Y, Zhang B, Gao S H, et al. Investigation on the effect of freeze-thaw on fracture mode classification in marble subjected to multi-level cyclic loads[J]. Theoretical and Applied Fracture Mechanics, 2021, 111: No.102847. | | [2] | Zhang K, Yuan Q, Huang T, et al. Predicting the cracking behavior of early-age concrete in CRTS III track[J]. Construction and Building Materials, 2022, 353: No.129105. | | [3] | 梁宁慧, 缪庆旭, 刘新荣, 等. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报:工学版, 2019, 49(4): 1144-1152. | | [3] | Liang Ning-hui, Miao Qing-xu, Liu Xin-rong, et al. Determination of fracture toughness and softening traction?separation law of polypropylene fiber reinforced concrete[J]. Joural of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1144-1152. | | [4] | 左新黛, 张劲泉, 赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报:工学版, 2023, 53(9): 2563-2572. | | [4] | Zuo Xin-dai, Zhang Jin-quan, Zhao Shang-chuan. Fatigue stiffness degradation and life prediction method of in?service concrete T?beams[J]. Joural of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2563-2572. | | [5] | Grégoire D, Rojas-Solano L B, Pijaudier-Cabot G. Failure and size effect for notched and unnotched concrete beams[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(10): 1434-1452. | | [6] | Hordijk D A. Local approach to fatigue of concrete [D]. Delft: Faculty of Civil Engineering and Geosciences, Delft University of Technology, 1991. | | [7] | Zhang H Z, Xu Y D, Gan Y D, et al. Experimentally validated meso-scale fracture modelling of mortar using output from micromechanical models[J]. Cement & Concrete Composites, 2020, 110: No.103567. | | [8] | Chen Y W, Feng J L, Li H, et al. Effect of coarse aggregate volume fraction on mode Ⅱ fracture toughness of concrete[J]. Engineering Fracture Mechanics, 2021, 242: No.107472. | | [9] | Yang D, Dong W, Liu X F, et al. Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model[J]. Engineering Fracture Mechanics, 2018, 199: 567-581. | | [10] | 童谷生, 姚良发, 徐攀. C40自密实混凝土Ⅱ型断裂韧度的确定[J]. 力学季刊, 2021, 42(4): 800-810. | | [10] | Tong Gu-sheng, Yao Liang-fa, Xu Pan. Determination of type Ⅱ fracture toughness of C40 self-compacting concrete[J]. Chinese Quarterly of Mechanics, 2021, 42(4): 800-810. | | [11] | 王康, 吴佰建, 李兆霞. 损伤跨尺度演化导致的混凝土强度尺寸效应[J]. 东南大学学报:自然科学版, 2014, 44(6): 1230-1234. | | [11] | Wang Kang, Wu Bai-jian, Li Zhao-xia. Size effect on concrete strength caused by trans-scale damage evolution[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(6): 1230-1234. | | [12] | Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams[J]. ACI Journal Proceedings, 1967, 64(3): 152-163. | | [13] | Rashid Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344. | | [14] | 周正峰, 康玉峰, 罗君豪, 等. 基于黏聚区模型的混凝土细观断裂分析[J]. 东南大学学报: 自然科学版, 2021, 51(2): 270-277. | | [14] | Zhou Zheng-feng, Kang Yu-feng, Luo Jun-hao,et al. Mesoscale fracture analysis on concrete based on cohesive zone model[J]. Journal of Southeast University(Natrural Science Edition), 2021, 51(2): 270-277. | | [15] | Cope R J, Rao P V, Clark L A, et al. Modelling of reinforced concrete behaviour for finite element analysis of bridge slabs[C]∥Proceedings of the International Conference on Numerical Methods for Nonlinear Problems, Swansea, UK, 1981:457-470. | | [16] | Rots J G, Nauta P, Kuster G M A, et al. Smeared crack approach and fracture localization in concrete[J]. Heron, 1985, 30(1): 1-48. | | [17] | Yang Z J, Chen J F. Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams[J]. Engineering Fracture Mechanics, 2005, 72(14): 2280-2297. | | [18] | Ba?ant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Matériaux Et Construction, 1983, 16(3): 155-177. | | [19] | Peerlings R H J, de Borst R, Brekelmans W A M, et al. Gradient enhanced damage for quasi-brittle materials [J]. International Journal for Numerical Methods in Engineering, 1996, 39(19): 3391-3403. | | [20] | Mo?s N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150. | | [21] | Li W, Guo L. A mechanical-diffusive peridynamics coupling model for meso-scale simulation of chloride penetration in concrete under loadings[J]. Construction and Building Materials, 2020, 241: No.118021. | | [22] | Bourdin B, Francfort G A, Marigo J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797-826. | | [23] | Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311. | | [24] | Wu J Y, Nguyen V P, Nguyen C T, et al. Chapter One - Phase-field modeling of fracture[M]//Bordas S P A, Balint D S. Advances in Applied Mechanics. Amsterdam:Elsevier, 2020. | | [25] | Wu J Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure[J]. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99. | | [26] | Loew P J, Poh L H, Peters B, et al. Accelerating fatigue simulations of a phase-field damage model for rubber[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370:No.113247. | | [27] | Marbceuf A, Bennani L, Budinger M, et al. Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model[J]. Engineering Fracture Mechanics, 2020, 230:No. 106926. | | [28] | Wu J Y, Huang Y L, Nguyen V P, et al. Crack nucleation and propagation in the phase-field cohesive zone model with application to Hertzian indentation fracture[J]. International Journal of Solids and Structures, 2022, 241: No.111462. | | [29] | Yin B B, Zhang L W. Phase field method for simulating the brittle fracture of fiber reinforced composites[J]. Engineering Fracture Mechanics, 2019, 211: 321-340. | | [30] | Zhang P, Hu X F, Wang X Y, et al. An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus[J]. Engineering Fracture Mechanics, 2018, 204: 268-287. | | [31] | Zhang P, Hu X F, Yang S T, et al. Modelling progressive failure in multi-phase materials using a phase field method[J]. Engineering Fracture Mechanics, 2019, 209: 105-124. | | [32] | Miehe C, Welschinger F, Hofacker M. A phase field model of electromechanical fracture[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(10): 1716-1740. | | [33] | Feng D C, Wu J Y. Phase-field regularized cohesive zone model (CZM) and size effect of concrete[J]. Engineering Fracture Mechanics, 2018, 197: 66-79. | | [34] | Wu J Y. A geometrically regularized gradient-damage model with energetic equivalence[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 612-637. | | [35] | Wu J Y, Mandal T K, Nguyen V P. A phase-field regularized cohesive zone model for hydrogen assisted cracking[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358:No. 112614. | | [36] | Wu J Y, Vinh Phu N. A length scale insensitive phase-field damage model for brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 20-42. | | [37] | Chen W X, Wu J Y. Phase-field cohesive zone modeling of multi-physical fracture in solids and the open-source implementation in Comsol Multiphysics[J]. Theoretical and Applied Fracture Mechanics, 2022, 117: No.103153. | | [38] | Ambati M, Gerasimov T, de Lorenzis L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405. | | [39] | Wu J Y. Unified analysis of enriched finite elements for modeling cohesive cracks[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(45): 3031-3050. | | [40] | Gálvez J C, Elices M, Guinea G V, et al. Mixed mode fracture of concrete under proportional and nonproportional loading[J]. International Journal of Fracture, 1998, 94(3): 267-284. | | [41] | Yu K, Yang Z, Li H, et al. A mesoscale modelling approach coupling SBFEM, continuous damage phase-field model and discrete cohesive crack model for concrete fracture[J]. Engineering Fracture Mechanics, 2023, 278: No.109030. | | [42] | Dong Q, Zhao X, Chen X, et al. Numerical simulation of mesoscopic cracking of cement-treated base material based on random polygon aggregate model [J]. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(3): 454-468. | | [43] | 王国彤. 钢渣透水水泥混凝土力学性能的多尺度评价研究[D]. 南京: 东南大学交通学院, 2021. | | [43] | Wang Guo-tong. Multi-scale research on the mechanical properties of steel slag pervious cement concrete[D]. Nanjing: School of Transportation, Southeast University, 2021. | | [44] | 袁嘉伟. 基于内聚力模型的水稳碎石材料半圆弯曲开裂细观数值模拟研究[D]. 南京: 东南大学交通学院, 2020. | | [44] | Yuan Jia-wei. Research on meso-scale numerical simulation of cement treated base materials semi-circular bending cracking based on cohesive zone model[D]. Nanjing: School of Transportation, Southeast University, 2020. | | [45] | Xiao J, Li W, Corr D J, et al. Effects of interfacial transition zones on the stress–strain behavior of modeled recycled aggregate concrete[J]. Cement and Concrete Research, 2013, 52: 82-99. | | [46] | Gao J M, Qian C X, Liu H F, et al. ITZ microstructure of concrete containing GGBS[J]. Cement and Concrete Research, 2005, 35(7): 1299-1304. | | [47] | Huang Y, Yang Z, Ren W, et al. 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model[J]. International Journal of Solids and Structures, 2015, 67-68: 340-352. | | [48] | Mondal P. Nanomechanical Properties of Cementitious Materials[M]. Evanston: Northwestern University, 2008. | | [49] | Naderi S, Zhang M. A novel framework for modelling the 3D mesostructure of steel fibre reinforced concrete[J]. Computers & Structures, 2020, 234: No.106251. | | [50] | de Borst R. Computation of post-bifurcation and post-failure behavior of strain-softening solids[J]. Computers & Structures, 1987, 25(2): 211-224. |
|