Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (7): 2286-2297.doi: 10.13229/j.cnki.jdxbgxb.20231100

Previous Articles     Next Articles

Mixed⁃mode mesoscale fracture behavior of concrete based on a phase field regularized cohesive zone model

Kang YAO1,2(),Qiao DONG1,2(),Xue-qin CHEN3,Bin SHI1,2,Shi-ao YAN1,2,Xiang WANG1,2   

  1. 1.School of Transportation,Southeast University,Nanjing 211189,China
    2.National Demonstration Center for Experimental Road and Traffic Engineering Education,Southeast University,Nanjing 211189,China
    3.School of Science,Nanjing University of Science and Technology,Nanjing 211189,China
  • Received:2023-10-14 Online:2025-07-01 Published:2025-09-12
  • Contact: Qiao DONG E-mail:yaokang0714@163.com;qiaodong@seu.edu.cn

Abstract:

To study the mechanism of mix-mode fracture and damage evolution in concrete, and analyze the influence of the mesoscale structural properties, a phase field regularized cohesive zone model (PF-CZM) was used to perform numerical simulations. The results indicated that the PF-CZM can accurately model the mesoscale fracture behavior of concrete, which is independent from the phase field scale parameter and meshing size. In the process of mix-mode fracture, damage and cracking occur at the notch tip, leading to concrete softening, cracks to expand at an angle, and eventual failure. Reducing the aggregate volume content can improve the cracking resistance. Optimizing the interfacial properties also contributes to these improvements, but the effect is weaker compared to a decrease in aggregate volume fraction.

CLC Number: 

  • U416.214
[1] Wang Y, Zhang B, Gao S H, et al. Investigation on the effect of freeze-thaw on fracture mode classification in marble subjected to multi-level cyclic loads[J]. Theoretical and Applied Fracture Mechanics, 2021, 111: No.102847.
[2] Zhang K, Yuan Q, Huang T, et al. Predicting the cracking behavior of early-age concrete in CRTS III track[J]. Construction and Building Materials, 2022, 353: No.129105.
[3] 梁宁慧, 缪庆旭, 刘新荣, 等. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报:工学版, 2019, 49(4): 1144-1152.
[3] Liang Ning-hui, Miao Qing-xu, Liu Xin-rong, et al. Determination of fracture toughness and softening traction?separation law of polypropylene fiber reinforced concrete[J]. Joural of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1144-1152.
[4] 左新黛, 张劲泉, 赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报:工学版, 2023, 53(9): 2563-2572.
[4] Zuo Xin-dai, Zhang Jin-quan, Zhao Shang-chuan. Fatigue stiffness degradation and life prediction method of in?service concrete T?beams[J]. Joural of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2563-2572.
[5] Grégoire D, Rojas-Solano L B, Pijaudier-Cabot G. Failure and size effect for notched and unnotched concrete beams[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(10): 1434-1452.
[6] Hordijk D A. Local approach to fatigue of concrete [D]. Delft: Faculty of Civil Engineering and Geosciences, Delft University of Technology, 1991.
[7] Zhang H Z, Xu Y D, Gan Y D, et al. Experimentally validated meso-scale fracture modelling of mortar using output from micromechanical models[J]. Cement & Concrete Composites, 2020, 110: No.103567.
[8] Chen Y W, Feng J L, Li H, et al. Effect of coarse aggregate volume fraction on mode Ⅱ fracture toughness of concrete[J]. Engineering Fracture Mechanics, 2021, 242: No.107472.
[9] Yang D, Dong W, Liu X F, et al. Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model[J]. Engineering Fracture Mechanics, 2018, 199: 567-581.
[10] 童谷生, 姚良发, 徐攀. C40自密实混凝土Ⅱ型断裂韧度的确定[J]. 力学季刊, 2021, 42(4): 800-810.
[10] Tong Gu-sheng, Yao Liang-fa, Xu Pan. Determination of type Ⅱ fracture toughness of C40 self-compacting concrete[J]. Chinese Quarterly of Mechanics, 2021, 42(4): 800-810.
[11] 王康, 吴佰建, 李兆霞. 损伤跨尺度演化导致的混凝土强度尺寸效应[J]. 东南大学学报:自然科学版, 2014, 44(6): 1230-1234.
[11] Wang Kang, Wu Bai-jian, Li Zhao-xia. Size effect on concrete strength caused by trans-scale damage evolution[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(6): 1230-1234.
[12] Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beams[J]. ACI Journal Proceedings, 1967, 64(3): 152-163.
[13] Rashid Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344.
[14] 周正峰, 康玉峰, 罗君豪, 等. 基于黏聚区模型的混凝土细观断裂分析[J]. 东南大学学报: 自然科学版, 2021, 51(2): 270-277.
[14] Zhou Zheng-feng, Kang Yu-feng, Luo Jun-hao,et al. Mesoscale fracture analysis on concrete based on cohesive zone model[J]. Journal of Southeast University(Natrural Science Edition), 2021, 51(2): 270-277.
[15] Cope R J, Rao P V, Clark L A, et al. Modelling of reinforced concrete behaviour for finite element analysis of bridge slabs[C]∥Proceedings of the International Conference on Numerical Methods for Nonlinear Problems, Swansea, UK, 1981:457-470.
[16] Rots J G, Nauta P, Kuster G M A, et al. Smeared crack approach and fracture localization in concrete[J]. Heron, 1985, 30(1): 1-48.
[17] Yang Z J, Chen J F. Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams[J]. Engineering Fracture Mechanics, 2005, 72(14): 2280-2297.
[18] Ba?ant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Matériaux Et Construction, 1983, 16(3): 155-177.
[19] Peerlings R H J, de Borst R, Brekelmans W A M, et al. Gradient enhanced damage for quasi-brittle materials [J]. International Journal for Numerical Methods in Engineering, 1996, 39(19): 3391-3403.
[20] Mo?s N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.
[21] Li W, Guo L. A mechanical-diffusive peridynamics coupling model for meso-scale simulation of chloride penetration in concrete under loadings[J]. Construction and Building Materials, 2020, 241: No.118021.
[22] Bourdin B, Francfort G A, Marigo J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797-826.
[23] Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311.
[24] Wu J Y, Nguyen V P, Nguyen C T, et al. Chapter One - Phase-field modeling of fracture[M]//Bordas S P A, Balint D S. Advances in Applied Mechanics. Amsterdam:Elsevier, 2020.
[25] Wu J Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure[J]. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99.
[26] Loew P J, Poh L H, Peters B, et al. Accelerating fatigue simulations of a phase-field damage model for rubber[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370:No.113247.
[27] Marbceuf A, Bennani L, Budinger M, et al. Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model[J]. Engineering Fracture Mechanics, 2020, 230:No. 106926.
[28] Wu J Y, Huang Y L, Nguyen V P, et al. Crack nucleation and propagation in the phase-field cohesive zone model with application to Hertzian indentation fracture[J]. International Journal of Solids and Structures, 2022, 241: No.111462.
[29] Yin B B, Zhang L W. Phase field method for simulating the brittle fracture of fiber reinforced composites[J]. Engineering Fracture Mechanics, 2019, 211: 321-340.
[30] Zhang P, Hu X F, Wang X Y, et al. An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus[J]. Engineering Fracture Mechanics, 2018, 204: 268-287.
[31] Zhang P, Hu X F, Yang S T, et al. Modelling progressive failure in multi-phase materials using a phase field method[J]. Engineering Fracture Mechanics, 2019, 209: 105-124.
[32] Miehe C, Welschinger F, Hofacker M. A phase field model of electromechanical fracture[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(10): 1716-1740.
[33] Feng D C, Wu J Y. Phase-field regularized cohesive zone model (CZM) and size effect of concrete[J]. Engineering Fracture Mechanics, 2018, 197: 66-79.
[34] Wu J Y. A geometrically regularized gradient-damage model with energetic equivalence[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 612-637.
[35] Wu J Y, Mandal T K, Nguyen V P. A phase-field regularized cohesive zone model for hydrogen assisted cracking[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358:No. 112614.
[36] Wu J Y, Vinh Phu N. A length scale insensitive phase-field damage model for brittle fracture[J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 20-42.
[37] Chen W X, Wu J Y. Phase-field cohesive zone modeling of multi-physical fracture in solids and the open-source implementation in Comsol Multiphysics[J]. Theoretical and Applied Fracture Mechanics, 2022, 117: No.103153.
[38] Ambati M, Gerasimov T, de Lorenzis L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405.
[39] Wu J Y. Unified analysis of enriched finite elements for modeling cohesive cracks[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(45): 3031-3050.
[40] Gálvez J C, Elices M, Guinea G V, et al. Mixed mode fracture of concrete under proportional and nonproportional loading[J]. International Journal of Fracture, 1998, 94(3): 267-284.
[41] Yu K, Yang Z, Li H, et al. A mesoscale modelling approach coupling SBFEM, continuous damage phase-field model and discrete cohesive crack model for concrete fracture[J]. Engineering Fracture Mechanics, 2023, 278: No.109030.
[42] Dong Q, Zhao X, Chen X, et al. Numerical simulation of mesoscopic cracking of cement-treated base material based on random polygon aggregate model [J]. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(3): 454-468.
[43] 王国彤. 钢渣透水水泥混凝土力学性能的多尺度评价研究[D]. 南京: 东南大学交通学院, 2021.
[43] Wang Guo-tong. Multi-scale research on the mechanical properties of steel slag pervious cement concrete[D]. Nanjing: School of Transportation, Southeast University, 2021.
[44] 袁嘉伟. 基于内聚力模型的水稳碎石材料半圆弯曲开裂细观数值模拟研究[D]. 南京: 东南大学交通学院, 2020.
[44] Yuan Jia-wei. Research on meso-scale numerical simulation of cement treated base materials semi-circular bending cracking based on cohesive zone model[D]. Nanjing: School of Transportation, Southeast University, 2020.
[45] Xiao J, Li W, Corr D J, et al. Effects of interfacial transition zones on the stress–strain behavior of modeled recycled aggregate concrete[J]. Cement and Concrete Research, 2013, 52: 82-99.
[46] Gao J M, Qian C X, Liu H F, et al. ITZ microstructure of concrete containing GGBS[J]. Cement and Concrete Research, 2005, 35(7): 1299-1304.
[47] Huang Y, Yang Z, Ren W, et al. 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model[J]. International Journal of Solids and Structures, 2015, 67-68: 340-352.
[48] Mondal P. Nanomechanical Properties of Cementitious Materials[M]. Evanston: Northwestern University, 2008.
[49] Naderi S, Zhang M. A novel framework for modelling the 3D mesostructure of steel fibre reinforced concrete[J]. Computers & Structures, 2020, 234: No.106251.
[50] de Borst R. Computation of post-bifurcation and post-failure behavior of strain-softening solids[J]. Computers & Structures, 1987, 25(2): 211-224.
[1] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[2] Xiao-kang ZHAO,Zhe HU,Jiu-peng ZHANG,Jian-zhong PEI,Ning SHI. Research progress in intelligent monitoring of pavement icing based on optical fiber sensing technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1566-1579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!