J4

• 数学 • 上一篇    下一篇

Neumann-Bessel级数的Rogosinski型和

成丽波1, 何甲兴2, 姜志侠1   

  1. 长春理工大学 数学系, 长春 130022; 2. 吉林大学 数学研究所, 长春
  • 收稿日期:2004-07-05 修回日期:1900-01-01 出版日期:2005-05-26 发布日期:2005-05-26
  • 通讯作者: 成丽波

Rogosinski Type Sums of Neumann-Bessel Series

CHENG Li-bo1, HE Jia-xing2, JIANG Zhi-xia1   

  1. 1. 1. Department of Mathematics, Changchun University of Science and Technology, Changchun 130022, China;2. Institute of Mathematics, Jilin University, Changchun 130012, China
  • Received:2004-07-05 Revised:1900-01-01 Online:2005-05-26 Published:2005-05-26
  • Contact: CHENG Li-bo

摘要: 由于Neumann-Bessel级数的部分和算子S(N,B由于Neumann-Bessel级数的部分和算子S(N,B) n(f;Z)并非对每个连续的函数f(Z)在单位圆周Γ上都一致收敛, 为了改进此插值多项式算子的收敛性, 从Neumann-Bessel级数的核函数K(N,B)n(Z,ξ)出发, 对其进行平均, 构造出一个新的Rogosinski核, 并且详细证明了该算子在单位圆周上一致地收敛于每个连续的f(Z), 且具有最佳逼近阶.

关键词: Neumann-Bessel级数, 核函数, 一致收敛, 最佳逼近阶

Abstract: As the partial sum operator S(N,B)n(f;Z) of Neumann-Bessel series can not uniformly converge for each continuous f(Z) on unit circle Γ, in order to improve the convergence the operator of inter polation polynomial, the kernel function K(N,B)n(Z,ξ) of Neumann-Besssl series was divided by 2 to construct a new Rogosinski kernel and it has been proved in detail that such a new operator uniformly converges for any continuous function f(Z) on the unit circle |Z|=1 and has the best approxi mation order for f(Z) on |Z|=1.

Key words: Neumann-Bessel series, kernel functions, uniformlyconvergent, the best approximation order

中图分类号: 

  • O174.41Rogosinski Type Sums of Neumann-Bessel Series