J4

• 数学 • 上一篇    下一篇

一类拟线性Robin边值问题的激波解

莫嘉琪1,2, 陈 秀3   

  1. 1. 安徽师范大学 数学系, 安徽 芜湖 241000; 2. 上海高校计算科学E-研究院 上海交通大学研究所, 上海 200240;3. 合肥学院 数理系, 合肥 230022
  • 收稿日期:2007-06-19 修回日期:1900-01-01 出版日期:2008-03-26 发布日期:2008-03-26
  • 通讯作者: 莫嘉琪

Shock Solution a Class of Quasilinear Robin Boundary Value Problems

MO Jiaqi1,2, CHEN Xiu3   

  1. 1. Department of Mathematics, Anhui Normal University, Wuhu 241000, Anhui Province, China;2. Division of Computational Science, EInstitutes of Shanghai Universities at SJTU, Shanghai 200240, China;3. Department of Mathematica and Physics, Hefei University, Hefei 230022, China
  • Received:2007-06-19 Revised:1900-01-01 Online:2008-03-26 Published:2008-03-26
  • Contact: MO Jiaqi

摘要: 研究一类Robin边值问题. 在适当的假设下, 利用幂级 数展开式, 构造了原问题的形式外部解; 利用伸长变量, 在区间内点附近构造问题解的激波层校正项; 利用微分不等式理论, 证明了原Robin边值问题解的存在性以及在整个区间内的一致有效性和渐近性.

关键词: 奇摄动, 拟线性, 边值问题, 激波解

Abstract: A class of Robin boundary value problems are considered. Under suitable conditions, firstly, the formal outer solution of the original problem is constructed with the expansion method of power series. Secondly, shock layer corrective term near the interior point in the interval is constructed via the transformation of stretched variable. Finally, the existence and uniform validity in the whole interval and asymptotic behavior of solution for the original Robin boundary value problems are proved by means of the theory of differentialinequalities. The satisfying results are obtained.

Key words: singular perturbation, quasilinear, boundary value problem, shock solution

中图分类号: 

  • O175.14