J4

• 计算机科学 • 上一篇    下一篇

基于模拟退火的无监督核模糊聚类算法

曲福恒1, 胡雅婷2, 马驷良1   

  1. 1. 吉林大学 数学研究所, 长春 130012; 2. 吉林农业大学 信息技术学院, 长春 130118
  • 收稿日期:2008-05-08 修回日期:1900-01-01 出版日期:2009-03-26 发布日期:2009-03-26
  • 通讯作者: 马驷良

Unsupervised Kernel Fuzzy Clustering AlgorithmBased on Simulated Annealing

QU Fuheng1, HU Yating2, MA Siliang1   

  1. 1. Institute of Mathematics, Jilin University, Changchun 130012, China;2. College of Information and Technology, Jilin Agricultural University, Changchun 130118, China
  • Received:2008-05-08 Revised:1900-01-01 Online:2009-03-26 Published:2009-03-26
  • Contact: MA Siliang

摘要: 提出一种新的核可能性聚类模型, 该模型以核可能性Xie-Beni聚类有效性指标作为代价函数, 基于可逆跳转马尔可夫链蒙特卡罗(RJMCMC)的模拟退火方法作为优化策略, 聚类个数可以在给定的范围内进行变动, 最优的聚类个数与聚类划分被自动获得. 比普通的基于模拟退火的(核)可能性聚类具有更高的效率, 且避免了普通(核)可能性聚类中易产生重合聚类的缺陷. 人造数据集和真实数据集上的对比实验表明了算法的有效性.

关键词: 可能性聚类, 模拟退火, 可逆跳转马尔可夫链蒙特卡罗, 核函数, 聚类有效性

Abstract: As a generalization of the conventional possibilistic and kernel based possibilistic clustering model, a new kernel based possibilistic clustering model was proposed. The new approach performs the clustering by optimizing the proposed kernel possibilistic Xie-Beni index using the RJMCMC (Reversible Jump Markov Chain Monte Carlo) based simulated annealing algorithm (SA), which makes the number of clusters change in a given range and the optimal number of clusters and partitioning obtained automatically. In contrast to the conventional SA based possibilistic or kernel based possibilistic clustering, it has a higher efficiency and avoids the problem of generating coincident clusters. The contrast experiments on real and artificial data show the effectiveness of the proposed algorithm.

Key words: possibilistic clustering, simulated annealing, reversible jump Markov chain Monte Carlo (RJMCMC), kernel function, cluster validity

中图分类号: 

  • TP391.4