吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

广义Ⅰ型一致不变凸条件下的极大极小分式规划的二阶对偶

焦合华1,2, 刘三阳1   

  1. 1. 西安电子科技大学 理学院, 西安 710071; 2. 长江师范学院 数学与计算机学院, 重庆  408100
  • 收稿日期:2012-12-20 出版日期:2013-07-26 发布日期:2013-08-06
  • 通讯作者: 刘三阳 E-mail:liusanyang@126.com

SecondOrder Duality for Minimax Fractional Programmingunder Generalized Type Ⅰ Univexity

JIAO Hehua1,2, LIU Sanyang1   

  1. 1. School of Science, Xidian University, Xi’an 710071, China;2. College of Mathematics and Computer, Yangtze Normal University, Chongqing 408100, China
  • Received:2012-12-20 Online:2013-07-26 Published:2013-08-06
  • Contact: LIU Sanyang E-mail:liusanyang@126.com

摘要:

给出一类新的二阶广义(F,α,ρ,θ)-d-Ⅴ-Ⅰ型一致不变凸的概念, 讨论了极大极小分式规划问题(P), 建立了规划(P)的一个二阶对偶模型, 并利用此二阶广义Ⅰ型一致不变凸性, 得到了弱对偶、 强对偶和严格逆对偶定理.

关键词: 极大极小规划, 分式规划, 二阶对偶, 广义(F, &alpha, &rho, &theta, )-d-Ⅴ-Ⅰ型一致不变凸

Abstract:

A new concept of secondorder generalized (F,α,ρ,θ)-d-Ⅴ-Ⅰ type univexity was introduced, a minimax fractional program ming problem (P) was considered, and a secondorder dual model of programming (P) was formulated. And weak duality strong duality and strict converse duality theorems were obtained on the basis of this secondorder generalized type Ⅰ univexity.

Key words:  , minimax programming; fractional programming; secondorder duality; generalized (F,&alpha, ,&rho, ,&theta, )-d-Ⅴ-Ⅰ type univexity

中图分类号: 

  • O221.6