吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

 行ρ-混合阵列加权和最大值的完全收敛性

胡志才1, 贾秀利1, 王振华2   

  1. 1. 吉林工商学院 基础部, 长春 130062; 2. 吉林大学 数学研究所, 长春 130012
  • 收稿日期:2013-04-21 出版日期:2014-01-26 发布日期:2014-03-05
  • 通讯作者: 胡志才 E-mail:huzhicai2013@sina.com

Complete Convergence for Weighted Sums of Arraysof Rowwise ρ-Mixing Random Variables

HU Zhicai1, JIA Xiuli1, WANG Zhenhua2   

  1. 1. Department of Basic Course, Jilin Business and Technology College, Changchun 130062, China;2. Institute of Mathematics, Jilin University, Changchun 130012, China
  • Received:2013-04-21 Online:2014-01-26 Published:2014-03-05
  • Contact: HU Zhicai E-mail:huzhicai2013@sina.com

摘要:

先利用ρ-混合序列Rosenthal型最大值不等式, 得到一个关于行ρ-混合阵列加权和最大值的完全收敛性定理, 再利用此定理证明ρ-混合序列加权和最大值的Marcinkiewicz-Zygmund型强大数定律.

关键词: 行&rho, -混合阵列, 完全收敛, 加权和, Marcinkiewicz-Zygmund型强大数定律

Abstract:

A complete convergence theorem for maximum of weighted sums of arrays of rowwise ρ-mixing random variables was established by the Rosenthal type maximal inequality for ρ- mixing random variables, and then a Marcinkiewicz\|Zygmund type strong law of large numbers for maximum of weighted sums of ρ- mixing random variables was obtained based on the above theorem.

Key words: arrays of rowwise ρ-mixing random variables, complete convergence, weighted sums, MarcinkiewiczZygmund type strong law of large numbers

中图分类号: 

  • O211.4