吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

线性扰动随机SI系统的渐近行为

孙艳1, 刘振文1, 赵亚男2, 姜志侠1, 谭海军1   

  1. 1. 长春理工大学 理学院, 长春 130022; 2. 长春大学 应用数学系, 长春130022
  • 收稿日期:2014-07-14 出版日期:2014-11-26 发布日期:2014-12-11
  • 通讯作者: 刘振文 E-mail:lzw19790115765@sina.com

Asymptotic Behavior of Stochastic SI Systemwith Linear Perturbation

SUN Yan1, LIU Zhenwen1, ZHAO Yanan2, JIANG Zhixia1, TAN Haijun1   

  1. 1. School of Science, Changchun University of Science and Technology, Changchun 130022, China;2. Department of Applied Mathematics, Changchun University, Changchun 130022, China
  • Received:2014-07-14 Online:2014-11-26 Published:2014-12-11
  • Contact: LIU Zhenwen E-mail:lzw19790115765@sina.com

摘要:

用Laypunov泛函方法研究随机SI系统全局正解的存在唯一性、 持久性或灭绝性以及在某些条件下的随机渐近行为. 结果表明: 随机SI系统具有平稳分布, 体现了遍历性.

关键词: Ito公式, Lyapunov法, 正解存在唯一性, 持久性, 灭绝性, 平稳分布, 遍历性

Abstract:

We discussed the existence and uniqueness, persistence, extinction and asymptotic behavior of the globally nonnegative solution of the stochastic SI system under certain conditions with Lyapunov analysis method. The stochastic SI system possesses stationary distributions and is ergodicity.

Key words:  Ito’s formula, Lyapunov method, existence and uniqueness of the positive solution; , permanence, extinction, station

中图分类号: 

  • O211.63