吉林大学学报(理学版)

• 计算机科学 • 上一篇    下一篇

基于改进的稀疏降噪自编码网络的三维模型识别方法

刘钢, 王慧, 王新颖   

  1. 长春工业大学 计算机科学与工程学院, 长春 130012
  • 收稿日期:2017-05-11 出版日期:2018-05-26 发布日期:2018-05-18
  • 通讯作者: 王新颖 E-mail:wang_xinying1979@163.com

3D Model Recognition Method Based on Improved Sparse Denoising Autoencoder Network

LIU Gang, WANG Hui, WANG Xinying   

  1. School of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
  • Received:2017-05-11 Online:2018-05-26 Published:2018-05-18
  • Contact: WANG Xinying E-mail:wang_xinying1979@163.com

摘要: 针对海量数据挖掘中三维模型特征识别准确率较低的问题, 提出一种改进的稀疏降噪自编码神经网络模型. 先基于改进的稀疏降噪自编码方法构建深度神经网络模型, 再利用无监督预训练方法及受限的拟牛顿计算方法对自编码神经网络进行训练, 最后采用softmax回归和得到的特征训练最终的分类器. 结果表明: 该方法对有噪声的三维模型特征信息具有较好的鲁棒性; 与栈式自编码神经网络和自学习神经网络相比, 该方法识别率较高.

关键词: 稀疏降噪自编码, 三维模型识别, softmax分类器

Abstract: Aiming at the problem of low accuracy of 3D model feature recognition in massive data mining, we proposed an improved sparse denoising autoencoder neural network model. Firstly, based on the improved sparse denoising autoencoder method, we constructed a deep neural network model, then used the unsupervisedpretraining method and restricted quasi Newton method to train the autoencoder neural network. Finally, the softmax regression and the obtained features were used to train the final classifier. The results show that the method has well robustness to the feature information of the three\|dimensional model with noise. Compared with the stack of autoencoder neural network and the selflearning neural network, the method has better recognition rate.

Key words: sparse denoising autoencoder, 3D model recognition, softmax classifier

中图分类号: 

  • TP391