吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (2): 329-336.
贾锋, 薛潺涓, 王欣
JIA Feng, XUE Chanjuan, WANG Xin
摘要: 针对肺部CT数据具有空间信息的特点, 提出一种基于深度学习的两阶段方法, 即使用两个3D卷积网络有效学习结节特征, 对CT图像中的肺结节进行检测和分类. 该方法的检测器部分采用基于UNet的编码器解码器结构的3D语义分割模型, 以预测结节的位置、 大小和语义掩码; 分类器部分采用3D双路径网络, 用于特征的汇总和收缩, 并给出分类结果. 为充分利用原始数据中的特征信息, 将检测器的结果应用于对原始数据进行采样和掩码操作, 并通过空间金字塔池化层获得一致的输入尺度. 在公开数据集上的实验结果表明, 该深度学习方法对CT图像肺结节的检测和分类具有良好的性能.
中图分类号: