吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (3): 539-544.

• 数学 • 上一篇    下一篇

因子von Neumann代数上非线性*-Lie导子的刻画

庞永锋, 张丹莉, 马栋   

  1. 西安建筑科技大学 理学院, 西安 710055
  • 收稿日期:2019-09-11 出版日期:2020-05-26 发布日期:2020-05-20
  • 通讯作者: 庞永锋 E-mail:pangyongfengyw@xauat.edu.cn

Characterization of Nonlinear *-Lie Derivations on Factor von Neumann Algebras

PANG Yongfeng, ZHANG Danli, MA Dong   

  1. School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Received:2019-09-11 Online:2020-05-26 Published:2020-05-20
  • Contact: PANG Yongfeng E-mail:pangyongfengyw@xauat.edu.cn

摘要: 设M是Hilbert空间H上维数大于1的因子von Neumann代数, 给出M上非线性*-Lie三重导子的定义, 并用代数Pierce分解方法证明: 如果Φ: M→M是一个非线性*-Lie三重导子, 则Φ是非线性*-Lie导子.

关键词: von Neumann代数, *-导子, Lie三重导子

Abstract: Let M be a factor von Neumann algebra on a Hilbert space H in which the dimension of M is larger than one. We give the definition of nonlinear *-Lie triple derivation on M. By the method of Pierce decomposition, it is proved that if Φ: M→M is a nonlinear *-Lie triple derivation, Φ is a nonlinear *-Lie derivation.

Key words: von Neumann algebra, *-derivation, Lie triple derivation

中图分类号: 

  • O177.1