吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (6): 1318-1326.

• • 上一篇    下一篇

多孔介质中Brinkman-Forchheimer模型的结构稳定性

石金诚, 李远飞   

  1. 广东财经大学华商学院 数据科学学院, 广州 511300
  • 出版日期:2020-11-18 发布日期:2020-11-26
  • 通讯作者: 李远飞 liqfd@163.com

Structural Stability of Brinkman-Forchheimer Model in Porous Medium

SHI Jincheng, LI Yuanfei   

  1. School of Data Science, Huashang College Guangdong University of Finance & Economics, Guangzhou 511300, China
  • Online:2020-11-18 Published:2020-11-26

摘要: 利用能量不等式的方法, 并借助一些先验估计, 给出多孔介质中溶解度与温度有关Brinkman-Forchheimer方程组的解对边界系数的连续依赖性和收敛性结果. 结果表明, 该类方程组对边界系数具有结构稳定性.

关键词: Brinkman-Forchheimer方程组, 收敛性, 连续依赖性, Brinkman系数, Forchheimer系数

Abstract: We gave the continuous dependence and convergence results of solutions of Brinkman-Forchheimer equations with temperature dependence in porous media on the boundary coefficients by using the method of energy inequality and with the aid of some a priori estimates. The results show that these equations are structurally stable for the boundary coefficients.

Key words: Brinkman-Forchheimer equations, convergence, continuous dependence, Brinkman coefficient, Forchheimer coefficient

中图分类号: 

  • O175.29