吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (6): 1357-1365.

• • 上一篇    下一篇

无相位远场数据反演散射障碍的神经网络方法

尹伟石1, 杨文红1, 曲福恒2   

  1. 1. 长春理工大学 理学院, 长春 130022; 2. 长春理工大学 计算机科学技术学院, 长春 130022
  • 出版日期:2020-11-18 发布日期:2020-11-26
  • 通讯作者: 尹伟石yinweishi @foxmail.com

Neural Network Method for Inverse Scattering Obstacles with Phaseless Far-Field Data

YIN Weishi1, YANG Wenhong1, QU Fuheng2   

  1. 1. School of Science, Changchun University of Science and Technology, Changchun 130022, China;
    2. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
  • Online:2020-11-18 Published:2020-11-26

摘要: 针对无相位信息反演障碍物位置及形状的问题, 提出一种两层门控循环单元(GRU)神经网络对门控循环单元神经网络的方法(MGNN), 并给出该方法的收敛性分析. 首先, 以无相位远场数据与障碍物边界曲线方程参数作为输入和输出, 通过GRU神经网络控制门思想与长期记忆功能, 有选择性地更新网络状态, 保存数据特征; 其次, 应用梯度下降算法更新模型权重和偏置, 解决了无相位信息的远场数据反演障碍物位置及形状的难题; 最后, 利用数值实验说明该方法的有效性.

关键词: 反散射问题, 无相位数据, 门控循环单元(GRU)神经网络, 收敛性

Abstract: Aiming at the problem of  the position and shape of inverse obstacles with  phaseless far-field data, we proposed  a two-layer gated recurrent unit (GRU) neural network to gated recurrent unit neural network (MGNN) method, and gave the convergence analysis of the proposed  method. Firstly, using the phaseless far-field data and the obstacle boundary curve equation parameters as input and output, through GRU neural network control gate idea and long-term memory function, the network states were selectively updated and the  data characteristics were saved. Secondly, we applied the gradient descent algorithm to update the weights and bias of the model, and  solved the difficulty of  the position and shape of inverse obstacles with phaseless far-field data. Finally,  the effectiveness of the proposed  method was demonstrated by numerical experiments.

Key words: inverse scattering problem, phaseless data, gated recurrent unit (GRU) neural network, convergence

中图分类号: 

  • O242.2