吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (6): 1382-1390.

• • 上一篇    下一篇

基于GA-BP神经网络的序列虹膜质量评价算法

张齐贤1,2, 朱晓冬1,3, 刘元宁1,3, 王超群1,2, 吴祖慷1,3, 李昕龙1,2   

  1. 1. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012;
    2. 吉林大学 软件学院, 长春 130012; 3. 吉林大学 计算机科学与技术学院, 长春 130012
  • 出版日期:2020-11-18 发布日期:2020-11-25
  • 通讯作者: 刘元宁 lyn@jlu.edu.cn

Sequential Iris Quality Evaluation Algorithm Based on GA-BP Neural Network

ZHANG Qixian1,2, ZHU Xiaodong1,3, LIU Yuanning1,3, WANG Chaoqun1,2, WU Zukang1,3, LI Xinlong1,2   

  1. 1. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China;
    2. College of Software, Jilin University, Changchun 130012, China;
    3. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Online:2020-11-18 Published:2020-11-25

摘要: 针对虹膜质量评价指标单一或过多的情形, 提出一种基于GA-BP神经网络的序列虹膜质量评价算法. 首先对虹膜图像进行粗质量评价, 筛选掉大多数不合格的较差质量图像; 然后对虹膜图像进行精质量评价, 选用3个较重要的指标得出指标值; 最后结合BP神经网络融合精质量评价指标进行图像质量的最终评价. 在JLU-6.0虹膜库中进行验证, 并与其他算法进行对比测试, 测试结果表明, 该算法能保留较多的有效虹膜图像, 且分类精确度较高.

关键词: 虹膜质量评价, 序列虹膜, BP神经网络, 精确度

Abstract: Aiming at the evaluation index of iris quality was single or too many, we proposed a sequential iris quality evaluation algorithm based on GA-BP neural network. Firstly, the rough quality of iris image was evaluated, and most of the unqualified images with poor quality were screened out. Secondly, we evaluated the fine quality of iris image and selected three important indexes to obtain the index value. Finally, the final evaluation of image quality was carried out by combining BP neural network with precise quality evaluation index. It was verified in JLU-6.0 iris library, and compared with other algorithms, the results show that the algorithm can retain more effective iris images and has higher classification accuracy.

Key words: iris quality evaluation, sequential iris, BP neural network, accuracy

中图分类号: 

  • TP391.41