吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (6): 1391-1398.
肖红1, 张瑶瑶1, 原野2
XIAO Hong1, ZHANG Yaoyao1, YUAN Ye2
摘要: 针对目前利用人脸特征进行性别和年龄识别率较低的问题, 提出一种基于改进高分辨率网络(improved high-resoultion net, IHRNet)的新方法. 首先, 在IHRNet中融合具有少量参数和较高识别率的MobileNetV3结构, 结合高分辨率网络自身具有的多尺度特征提取优势, 有效提升了人脸特征识别的准确率; 其次, 为降低过拟合风险, 网络先采用IMDB-WIKI人脸数据集进行预训练, 然后加载预训练模型在Adience人脸数据集中进行训练和测试; 最后, 与ResNet50,HRNet,MobileNetV3三种同类算法进行对比. 实验结果表明, IHRNet在年龄及性别识别上的准确率分别高达82%,95%, 比同类算法分别平均提升9%和3%, 且参数量较未改进时下降36%, 验证了改进算法的有效性.
中图分类号: