吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (5): 1072-1078.

• • 上一篇    下一篇

一类Conformable分数阶发展方程温和解的存在性

安文艳, 杨和   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2024-01-12 出版日期:2024-09-26 发布日期:2024-09-26
  • 通讯作者: 杨和 E-mail:yanghe@nwnu.edu.cn

Existence of Mild Soulutions for a Class of Conformable Fractional Evolution Equations

AN Wenyan, YANG He   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2024-01-12 Online:2024-09-26 Published:2024-09-26

摘要: 用算子半群理论和上下解单调迭代方法讨论Banach空间中具有Volterra型积分算子的一类Conformable分数阶发展方程初值问题温和解的存在性, 其中: Tα表示阶数为0<α<1的Conformable分数阶导数算子; A为稠定闭线性算子. 在非线性项满足适当的不等式条件下, 得到了该方程温和解的存在性.

关键词: 分数阶发展方程, 温和解, 上下解, 单调迭代方法

Abstract: By using operator semigroup theory and upper and lower solution monotone iterative methods, we discuss the existence of mild solutions to  initial value problems for a class of Conformable fractional evolution equations  with Volterra-type integral operators in Banach spaces, where Tα represents the  Conformable fractional derivative operator with order 0<α<1, A is a coherently closed linear operator. Under the condition that the nonlinear term satisfies the appropriate inequality, the existence of the mild solution to the equation is obtained.

Key words: fractional evolution equation, mild solution, upper and lower solution, monotone iterative method

中图分类号: 

  • O175.15